Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
基本信息
- 批准号:RGPIN-2022-05397
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proliferation of inexpensive sensors are paving the way for innovative AI technologies and applications. For instance, data from distributed RGB, IR, LiDAR and depth sensors are often integrated in, e.g., mobile robotics, autonomous driving, and video surveillance applications, to enhance perception. In such applications, cost-effective systems are required to recognize individuals, objects, and their behaviours from the massive amounts of data captured over multiple different sensors. Beyond the computational complexity, video recognition across multiple different domains (sensor modalities and operational conditions) may be degraded in real-world scenarios, due to cross-domain shifts, background clutter, variations in illumination, occlusion, etc. Deep learning (DL) models based on convolutional neural networks provide state-of-the-art performance in many visual recognition applications, yet their performance can decline in real-world applications when training on noisy data with limited or no annotations, and in the presence of domain shift between source and target (operational) data. The main long-term objective of this research program is to investigate and develop DL models for accurate video recognition and localization across multiple diverse domains with limited supervision. Given the high cost of collection and annotation of target data for training, these models will rely on weakly-supervised learning (WSL) to sustain a high level of performance. The specific objective consists in developing deep metric learning (DML) models based on weakly-labeled videos according to two main axes two main axes - (1) cross-domain adaptation and recognition, and (2) spatio-temporal object localization for interpretation. In Axis 1, knowledge distillation and multi-head methods are proposed to train DML models for weakly-supervised domain adaptation across different source and target domains. In Axis 2, methods for full-resolution class activation mapping methods and vision transformers are proposed to train DML models for weakly-supervised object localization and interpretation. Each axis will mainly be examined from a perspective of video re-identification applications using multiple distributed RGB and/or IR cameras, where video sequences are associated across different domains. This program will address concrete research problems related to the engineering of AI, and develop innovative methods that contribute to the state-of-art in several fields, most notably in DL and computer vision. Although this program will mostly focus on video-based recognition, these models are relevant in a wide range of tasks and applications. Given the recent popularity of DL, and it numerous commercial applications, this program will offer excellent opportunities for collaboration with academics, partnering with Canadian companies, training HQP, producing high impact publications, and initiating projects funded through other granting mechanisms.
廉价传感器的激增正在为创新的人工智能技术和应用铺平道路。例如,来自分布式 RGB、IR、LiDAR 和深度传感器的数据通常集成在移动机器人、自动驾驶和视频监控应用中,以增强感知。在此类应用中,需要具有成本效益的系统从多个不同传感器捕获的大量数据中识别个人、物体及其行为。除了计算复杂性之外,跨多个不同域(传感器模式和操作条件)的视频识别在现实场景中可能会由于跨域变化、背景杂波、照明变化、遮挡等而降低。基于卷积神经网络的深度学习 (DL) 模型在许多视觉识别应用中提供了最先进的性能,但在使用噪声数据进行训练时,其性能可能会在实际应用中下降 有限或没有注释,并且存在源数据和目标(操作)数据之间的域转移。 该研究项目的主要长期目标是研究和开发深度学习模型,以便在有限的监督下跨多个不同领域进行准确的视频识别和定位。鉴于训练目标数据的收集和注释成本高昂,这些模型将依赖弱监督学习(WSL)来维持高水平的性能。具体目标在于根据两个主轴(1)跨域适应和识别,以及(2)用于解释的时空对象定位,开发基于弱标记视频的深度度量学习(DML)模型。在轴 1 中,提出了知识蒸馏和多头方法来训练 DML 模型,以实现跨不同源域和目标域的弱监督域适应。在 Axis 2 中,提出了全分辨率类激活映射方法和视觉转换器来训练 DML 模型以进行弱监督对象定位和解释。每个轴将主要从使用多个分布式 RGB 和/或 IR 摄像机的视频重新识别应用的角度进行检查,其中视频序列跨不同域关联。该项目将解决与人工智能工程相关的具体研究问题,并开发有助于多个领域最先进的创新方法,尤其是深度学习和计算机视觉领域。尽管该计划主要关注基于视频的识别,但这些模型与广泛的任务和应用相关。鉴于深度学习最近的流行及其众多的商业应用,该计划将为与学术界合作、与加拿大公司合作、培训 HQP、制作高影响力出版物以及启动通过其他资助机制资助的项目提供极好的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Granger, Eric其他文献
Partially-supervised learning from facial trajectories for face recognition in video surveillance
- DOI:
10.1016/j.inffus.2014.05.006 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:18.6
- 作者:
De-la-Torre, Miguel;Granger, Eric;Gorodnichy, Dmitry O. - 通讯作者:
Gorodnichy, Dmitry O.
Graphical EM for on-line learning of grammatical probabilities in radar Electronic Support
- DOI:
10.1016/j.asoc.2012.02.022 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:8.7
- 作者:
Latombe, Guillaume;Granger, Eric;Dilkes, Fred A. - 通讯作者:
Dilkes, Fred A.
On the memory complexity of the forward-backward algorithm
- DOI:
10.1016/j.patrec.2009.09.023 - 发表时间:
2010-01-15 - 期刊:
- 影响因子:5.1
- 作者:
Khreich, Wael;Granger, Eric;Sabourin, Robert - 通讯作者:
Sabourin, Robert
A paired sparse representation model for robust face recognition from a single sample
- DOI:
10.1016/j.patcog.2019.107129 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:8
- 作者:
Mokhayeri, Fania;Granger, Eric - 通讯作者:
Granger, Eric
Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems
- DOI:
10.1109/tnnls.2018.2869164 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:10.4
- 作者:
Carbonneau, Marc-Andre;Granger, Eric;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Granger, Eric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Granger, Eric', 18)}}的其他基金
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
DGDND-2022-05397 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
- 批准号:
543663-2019 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
- 批准号:
543663-2019 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Detection of COVID-19 in Intelligent Building Occupancy Management
智能建筑占用管理中的 COVID-19 检测
- 批准号:
555212-2020 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Alliance Grants
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
- 批准号:
543663-2019 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
A Comparison of Siamese Convolutional Neural Networks for Person Re-Identification in Video Surveillance**
视频监控中人员重新识别的连体卷积神经网络的比较**
- 批准号:
533701-2018 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Engage Grants Program
相似海外基金
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
- 批准号:
RGPIN-2019-06018 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
DGDND-2022-05397 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Development of deepometry for the supervised and weakly supervised learning of imaging data
用于成像数据监督和弱监督学习的深度测量的发展
- 批准号:
2748735 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Studentship
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228990 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228989 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
3D land cover mapping from satellite imagery by weakly supervised learning
通过弱监督学习根据卫星图像绘制 3D 土地覆盖图
- 批准号:
22H03609 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Weakly-supervised semantic segmentation to study resistance to antibiotics
用于研究抗生素耐药性的弱监督语义分割
- 批准号:
562806-2021 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: Weakly Supervised Graph Neural Networks
EAGER:弱监督图神经网络
- 批准号:
2137468 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant














{{item.name}}会员




