ERI: Multiphysics cosimulation approach for optimal design of microgrid high frequency transformers

ERI:微电网高频变压器优化设计的多物理场协同仿真方法

基本信息

  • 批准号:
    2138408
  • 负责人:
  • 金额:
    $ 19.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Microgrids are electrical networks capable of operating disconnected from the utility grid, and they are key players in the ongoing energy revolution. Advancement of the current knowledge in the field of microgrids is critical to transform the present energy landscape by increasing the reliability of the US electric power grid while reducing its carbon footprint. Microgrids are characterized by their extensive inclusion of renewable and distributed energy resources, use of smart technologies, and contribution to the resilience and energy-efficiency of modern power systems. An important challenge for the widespread implementation of microgrids is that they endure significant electromagnetic and thermal stresses during their operation, thus there is an urgent need for the design of novel, more efficient, and more resilient microgrid components. This is particularly true for power electronic converters, which are extensively used for microgrid interconnection to the main grid, and for interfacing of generation sources, energy storage systems and electric loads. Solid-state transformers are a novel type of power converter that has attracted a lot of attention because they are highly efficient and have a smaller footprint than conventional power transformers given their substantially reduced size, weight and cost; they also include smart functionalities to respond better to grid disturbances. Therefore, solid-state transformers have the potential of replacing traditional transformers for the widespread addition of renewable resources. From the main components of a solid-state transformer, the high frequency transformer is recognized as its key element. The efficient and affordable design of high frequency transformers is critical for achieving the main requirements of solid-state transformers: high density, minimal losses, voltage regulation, and electric isolation. Thus far such design has been a bottleneck for the mainstream adoption of solid-state transformers in distribution systems and microgrids due to reliability and operating life concerns. In this project, we propose the use of novel and innovative modeling and simulation tools for the optimal design of high frequency transformers to maximize their operating life and minimize the possibility of failure or damage under the conditions imposed by microgrid application. The outcomes of this project are expected to have a positive impact on the development of a more resilient and sustainable electrical power grid.The main goal of this project is to assess the effectiveness of the synergistic combination of novel multiphysics and microgrid modeling and simulation tools for the optimal design of high frequency transformers for microgrid application, considering the stresses produced by the extensive inclusion of power electronic-interfaced sources, loads, and storage units during steady state and transient conditions. To reach this goal, this project includes the development, implementation, and comprehensive testing of a modeling approach for accurate dynamic simulation of the microgrid system and its online interaction with a detailed physics-based high frequency transformer model. The proposed cosimulation approach constitutes a substantial improvement over existing design tools, considering the particular challenges of microgrid operation. By taking a multiphysics and multi-objective design approach, this project intends to obtain an enhanced high frequency transformer design that maximizes efficiency, operating life and power density of the device. By interfacing finite element analysis and dynamic system simulation tools, this project aims to combine the benefits from both tools as an integral part of an enhanced design optimization process: accurate and realistic microgrid simulation under a variety of normal and abnormal operating conditions, and detailed geometrical and material multiphysics modeling of the HF transformer. The successful completion of the proposed project will constitute an important step forward in the widespread utilization of SSTs in microgrids and distribution systems, which in turn can result in a significantly enhanced efficiency in the integration of renewable generation, as well as in the delivery of electricity to consumers. In addition to the scientific goals of this project, the PI endeavors to use this project as a platform for improving engineering education and recruiting individuals from diverse backgrounds to power engineering. In order to advance these outcomes, the PI will run a summer undergraduate research program to provide students with genuine research experiences and training in the interrelated power engineering and electromagnetic design areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微电网是能够与公用电网断开连接的电力网络,它们是正在进行的能源革命的关键参与者。微电网领域现有知识的进步对于通过提高美国电网的可靠性同时减少其碳足迹来改变目前的能源格局至关重要。微电网的特点是广泛纳入可再生能源和分布式能源,使用智能技术,并有助于现代电力系统的复原力和能源效率。微电网的广泛实施的一个重要挑战是,它们在其操作期间承受显著的电磁和热应力,因此迫切需要设计新颖的、更高效的和更有弹性的微电网部件。对于电力电子转换器尤其如此,电力电子转换器广泛用于微电网与主电网的互连,以及用于发电源、储能系统和电力负载的接口。 固态变压器是一种新型的功率转换器,由于其高度高效并且具有比传统功率变压器更小的占地面积,从而大大降低了尺寸,重量和成本,因此吸引了很多关注;它们还包括智能功能,以更好地响应电网干扰。因此,固态变压器具有取代传统变压器的潜力,以广泛增加可再生资源。从固态Transformer的主要组成部分来看,高频Transformer是固态变压器的关键元件。高效且经济实惠的高频变压器设计对于实现固态变压器的主要要求至关重要:高密度、最小损耗、电压调节和电气隔离。到目前为止,由于可靠性和工作寿命问题,这种设计一直是配电系统和微电网中主流采用固态变压器的瓶颈。在这个项目中,我们建议使用新颖的和创新的建模和仿真工具,用于高频变压器的优化设计,以最大限度地提高其工作寿命,并最大限度地减少微电网应用条件下的故障或损坏的可能性。该项目的成果预计将对发展更具弹性和可持续性的电网产生积极影响。该项目的主要目标是评估新型多物理场和微电网建模和仿真工具协同组合的有效性,以优化设计用于微电网应用的高频变压器,考虑到在稳态和瞬态条件期间由电力电子接口源、负载和存储单元的广泛包含所产生的应力。为了实现这一目标,该项目包括开发,实施和全面测试的建模方法的精确动态模拟的微电网系统和它的在线交互详细的基于物理的高频Transformer模型。考虑到微电网运行的特殊挑战,所提出的协同仿真方法对现有的设计工具进行了重大改进。通过采用多物理场和多目标设计方法,该项目旨在获得增强的高频Transformer设计,以最大限度地提高器件的效率、工作寿命和功率密度。通过连接有限元分析和动态系统仿真工具,该项目的目标是联合收割机的好处,从这两个工具作为一个增强的设计优化过程的一个组成部分:准确和现实的微电网模拟各种正常和异常的操作条件下,和详细的几何和材料的HF Transformer的多物理场建模。拟议项目的成功完成将是在微电网和配电系统中广泛使用SST的重要一步,这反过来又可以大大提高可再生能源发电的整合效率以及向消费者提供电力的效率。除了该项目的科学目标外,PI还努力利用该项目作为改善工程教育和招募来自不同背景的个人进行电力工程的平台。为了推进这些成果,PI将开展一项暑期本科生研究计划,为学生提供相关电力工程和电磁设计领域的真正研究经验和培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cosimulation Approach for Transient Analysis and Inductor Design of DC-DC Buck Converters
DC-DC 降压转换器瞬态分析和电感设计的协同仿真方法
Synergistic Approach for Computational Analysis of Geomagnetically Induced Currents in Power Grids
电网地磁感应电流计算分析的协同方法
  • DOI:
    10.1109/naps58826.2023.10318742
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oke, Adebola;Gomez, Pablo
  • 通讯作者:
    Gomez, Pablo
A Photovoltaic MPPT Charge Controller Real-Time Testbed for Cybersecurity Applications
适用于网络安全应用的光伏 MPPT 充电控制器实时测试台
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pablo Gomez其他文献

Optimal insulation design of form-wound stator winding with stress grading system under fast rise-time excitation
  • DOI:
    10.1007/s00202-022-01586-5
  • 发表时间:
    2022-06-26
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Mohammed Khalil Hussain;Pablo Gomez
  • 通讯作者:
    Pablo Gomez
Compressive sensing: A methodological approach to an efficient signal processing
压缩感知:高效信号处理的方法论
  • DOI:
    10.15446/dyna.v82n192.45512
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evelio Astaiza Hoyos;Pablo Gomez;Héctor Fabio Bermúdez Orozco
  • 通讯作者:
    Héctor Fabio Bermúdez Orozco
1066: Limitations of Biopsy Gleason Grade: Implications for Counseling Patients with Biopsy Gleason 6 Prostate Cancer
  • DOI:
    10.1016/s0022-5347(18)38303-4
  • 发表时间:
    2004-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul D. Sved;Murugesan Manoharan;Pablo Gomez;Sandy Kim;Mark S. Soloway
  • 通讯作者:
    Mark S. Soloway
Stakeholders versus Firm Communication in Social Media: The Case of Twitter and Corporate Social Responsibility Information
社交媒体中的利益相关者与企业沟通:Twitter 和企业社会责任信息案例
  • DOI:
    10.1080/09638180.2019.1708428
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Pablo Gomez;Encarna Guillamón;Beatriz García Osma
  • 通讯作者:
    Beatriz García Osma
a human–robot interaction testbed to study linguistic features of speech
研究语音语言特征的人机交互测试平台
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cao;Hoang Long;Lars Christian;Xuan Nhan;De Beir;Pablo Gomez
  • 通讯作者:
    Pablo Gomez

Pablo Gomez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pablo Gomez', 18)}}的其他基金

I-Corps: Customer Discovery for Transmission Line Fault Location Technology
I-Corps:输电线路故障定位技术的客户发现
  • 批准号:
    2217504
  • 财政年份:
    2022
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Reviewer Zero: Changing the Culture of Peer Review to Increase Diversity, Equity, and Inclusion
零审稿人:改变同行评审文化以增加多样性、公平性和包容性
  • 批准号:
    2224779
  • 财政年份:
    2022
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Interaction of Sensory and Response Processes in Decision Making
协作研究:决策中感觉和反应过程的相互作用
  • 批准号:
    2127135
  • 财政年份:
    2021
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
STTR Phase I: Focused Ion Beam Fabricated Custom Probes for Superior Magnetic Force Microscopy of Recording Media
STTR 第一阶段:聚焦离子束制造的定制探针,用于记录介质的高级磁力显微镜
  • 批准号:
    0712445
  • 财政年份:
    2007
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
  • 批准号:
    2338541
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Computational MultiPhysics Analysis of 3D Structural Damage and Failure
3D 结构损伤和失效的计算多物理场分析
  • 批准号:
    DP240101471
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Discovery Projects
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
  • 批准号:
    2238124
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
RII Track-4: NSF: An Integrated Multiphysics Machine Learning Modeling and Experimental Framework for Optimizing Micro-Needle Patches
RII Track-4:NSF:用于优化微针贴片的集成多物理场机器学习建模和实验框架
  • 批准号:
    2229555
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Multiphysics Computational Science for Adaptive Process Design of CFRP Composites
CFRP 复合材料自适应工艺设计的多物理场计算科学
  • 批准号:
    23H01604
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MCSIMus: Monte Carlo Simulation with Inline Multiphysics
MCSIMus:使用内联多物理场进行蒙特卡罗仿真
  • 批准号:
    EP/W037165/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Fellowship
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
  • 批准号:
    23H01295
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multiphysics Phenomena on the Long-term Performance of Enhanced Geothermal Wells
增强型地热井长期性能的多物理现象
  • 批准号:
    547488-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Discovery of Governing Laws in Real Multiphysics, Multicoupled Systems in Materials Processing
发现材料加工中真实多物理场、多耦合系统的控制定律
  • 批准号:
    RGPIN-2019-05981
  • 财政年份:
    2022
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了