NSF-DFG: Strategies to Overcome Contemporary Limitations of Reductive Electrosynthetic Conversions in Aqueous Media
NSF-DFG:克服水介质还原电合成转换当代局限性的策略
基本信息
- 批准号:2140342
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reductive electrosynthesis is an inherently green, safe, and sustainable technology for chemical reductions as it replaces hazardous chemicals and/or harsh reaction conditions by electrons supplied by renewable wind/solar energy. Reductive electrosynthesis also offers unique opportunities for increasing conversion efficiencies and for synthesizing new molecules that are not accessible thermochemically or photochemically. However, the implementation of this technology for chemical manufacturing is hampered by the parasitic hydrogen evolution reaction and by the corrosion of conventional cathode materials. This project will introduce highly disruptive concepts that address these severe shortcomings. This effort is timely as it will advance the American power and chemical manufacturing industries, and provide unique outreach and training opportunities for building a locally-rooted STEM workforce in the Midwest.The parasitic hydrogen evolution reaction (HER) and corrosion of contemporary cathode materials will be addressed through the investigation and development of two innovative approaches, namely cationic hydrogen inhibitors and unconventional metal and metal alloy cathode materials. Novel cationic hydrogen inhibitors will be designed to selectively increase the overvoltage for the hydrogen evolution reaction, which will enable reactions that are inaccessible by the current state-of-the-art methods. These cations will interact with the negatively charged cathode and self-assemble to create a protective ionic layer that hampers corrosion and HER while enabling the desired tunneling of electrons to the substrates in solution. Cations with various molecular structures will be synthesized and investigated to establish structure-performance relationships. In addition to self-assembly, the research team will also explore the electrografting of selected cations to suitable electrode materials. This approach is expected to grant a high flexibility as the organic cationic inhibitors can be further tailored for specific requirements, for instance using chiral additives to transfer stereogenic information to desired substrates. The stated shortcomings will also be tackled from a different perspective by designing unconventional electrode materials such as Ga/In mixtures, ternary alloys of zinc and lead, bismuth, and bismuth alloys as cathodes. These materials are expected to excel in many aspects. For example, in addition to exhibiting high hydrogen overpotentials, some of them should also show increased biocompatibility and resistance to biobased corrosive compounds compared to existing metal electrodes used in reductive electrochemistry. The performance of such alloys for reductive electrosynthesis in aqueous media has not been carefully investigated yet and it is anticipated that doing so will open new avenues for organic electrosynthesis. The synergistic combination of both approaches, i.e. cationic hydrogen inhibitors and novel metal alloys, is also expected to yield unmatched performance and durability for challenging transformations. The technological advances achieved through this project will promote the adoption of green electrochemistry in the chemical industry and facilitate the implementation of electrochemical manufacturing processes at commercial scale.This research was funded under the NSF-DFG Lead Agency Activity in Electrosynthesis and Electrocatalysis (NSF-DFG EChem) opportunity NSF 20-578.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
还原电合成是一种本质上绿色、安全和可持续的化学还原技术,因为它通过可再生风能/太阳能提供的电子取代了危险化学品和/或苛刻的反应条件。还原电合成还为提高转化效率和合成热化学或光化学无法获得的新分子提供了独特的机会。然而,该技术用于化学制造的实施受到寄生析氢反应和传统阴极材料的腐蚀的阻碍。该项目将引入高度颠覆性的概念,以解决这些严重的缺陷。这项工作是及时的,因为它将推动美国电力和化学制造业,并提供独特的推广和培训机会,建立一个植根于当地的干劳动力在中西部。寄生析氢反应(HER)和腐蚀的当代阴极材料将通过调查和开发两种创新的方法,即阳离子氢抑制剂和非常规金属和金属合金阴极材料。新型阳离子氢抑制剂将被设计为选择性地增加析氢反应的过电压,这将使得能够进行通过当前最先进的方法无法进行的反应。这些阳离子将与带负电荷的阴极相互作用并自组装以产生保护性离子层,该保护性离子层阻碍腐蚀和HER,同时实现电子到溶液中的基板的期望隧穿。将合成和研究具有各种分子结构的阳离子,以建立结构-性能关系。除了自组装,研究小组还将探索将选定的阳离子电接枝到合适的电极材料上。预期该方法赋予高灵活性,因为有机阳离子抑制剂可以进一步针对特定要求定制,例如使用手性添加剂将立体异构信息转移到所需底物。上述缺点也将从不同的角度通过设计非常规电极材料来解决,例如Ga/In混合物、锌和铅的三元合金、铋以及作为阴极的铋合金。预计这些材料在许多方面都将出类拔萃。例如,除了表现出高的氢过电位之外,与还原电化学中使用的现有金属电极相比,它们中的一些还应该表现出增加的生物相容性和对生物基腐蚀性化合物的耐受性。这种合金在水介质中还原电合成的性能尚未仔细研究,预计这样做将为有机电合成开辟新的途径。这两种方法的协同组合,即阳离子氢抑制剂和新型金属合金,也有望产生无与伦比的性能和耐久性,以应对挑战性的转变。本研究由NSF-DFG电合成和电催化牵头机构活动资助,通过本项目实现的技术进步将促进化学工业中绿色电化学的采用,并促进电化学制造过程的商业规模实施(NSF-DFG EChem)机会NSF 20- 578.该奖项反映了NSF的法定使命,并通过利用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Philippe Tessonnier其他文献
Local reactivity descriptors to decipher the electrochemical hydrogenation of unsaturated carboxylic acids
用于破译不饱和羧酸电化学氢化的局部反应性描述符
- DOI:
10.1039/d3gc02909c - 发表时间:
2023-12-11 - 期刊:
- 影响因子:9.200
- 作者:
Marco Nazareno Dell'Anna;Geet Gupta;Prathamesh T. Prabhu;Ting-Hung Chu;Luke T. Roling;Jean-Philippe Tessonnier - 通讯作者:
Jean-Philippe Tessonnier
Structure sensitivity of the electrochemical hydrogenation of emcis/em,emcis/em-muconic acid to hexenedioic acid and adipic acid
反式/顺式、反式/顺式-粘康酸电化学加氢为己二酸和己二烯二酸的结构敏感性
- DOI:
10.1039/d3gc03021k - 发表时间:
2024-04-22 - 期刊:
- 影响因子:9.200
- 作者:
Deep M. Patel;Prathamesh T. Prabhu;Geet Gupta;Marco Nazareno Dell'Anna;Samantha Kling;Huy T. Nguyen;Jean-Philippe Tessonnier;Luke T. Roling - 通讯作者:
Luke T. Roling
Jean-Philippe Tessonnier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Philippe Tessonnier', 18)}}的其他基金
EFRI DCheM: Chemicals from Renewables Through Green Electrochemistry (ChaRGE)
EFRI DCheM:通过绿色电化学从可再生能源中生产化学品 (ChaRGE)
- 批准号:
2132200 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Workshop on Electroorganic Chemistry: from Synthesis to Chemical Manufacturing
有机电化学研讨会:从合成到化学制造
- 批准号:
1939594 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tailored Carbon-Supported Catalysts for the Conversion of Biomass in the Condensed Phase
用于凝相生物质转化的定制碳负载催化剂
- 批准号:
1804436 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SusChEM: Continuous Flow Lignin Deconstruction in Supercritical Solvent Mixtures and Conversion to Renewable Chemicals
SusChEM:超临界溶剂混合物中的连续流动木质素解构以及转化为可再生化学品
- 批准号:
1706046 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
PFI:AIR-TT: Technology for the Production of Polyamides With Bio-Enabled Properties
PFI:AIR-TT:具有生物特性的聚酰胺生产技术
- 批准号:
1701000 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SusChEM: Electrocatalytic Hydrogenation of Biorenewable Feedstock to Fuels and Chemicals
SusChEM:生物可再生原料电催化加氢生产燃料和化学品
- 批准号:
1512126 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Tuning Microtubule-Actin crosstalk to control Mitotic Fidelity
NSF/BIO-DFG:调节微管-肌动蛋白串扰以控制有丝分裂保真度
- 批准号:
2319918 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Cytochrome c oxidase adaptation to hypoxia in systemic vascular cells - From structure to function
NSF/BIO-DFG:细胞色素 c 氧化酶对全身血管细胞缺氧的适应 - 从结构到功能
- 批准号:
2329629 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF/BIO-DFG: The role of ARL 13B in controlling ciliary cAMP signaling
NSF/BIO-DFG:ARL 13B 在控制睫状 cAMP 信号传导中的作用
- 批准号:
2329634 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG: Multiscale Data-Physics Models for the Critical Role of Interfaces in Overmolded Thermoplastic Parts
NSF-DFG:多尺度数据物理模型显示界面在包覆成型热塑性零件中的关键作用
- 批准号:
2225290 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
- 批准号:
2228266 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
- 批准号:
2302577 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2346885 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
- 批准号:
2234270 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG: Solvent-Free Manufacturing of Perovskite Large-Scale Electronics
NSF-DFG:钙钛矿大型电子产品的无溶剂制造
- 批准号:
2135937 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




