NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
基本信息
- 批准号:2228266
- 负责人:
- 金额:$ 45.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Programmable mechanical metamaterials (PMMs) have unique mechanical properties and functionalities through specific geometric designs without changing the material composition. Current PMMs are primarily made of polymer, which cannot sustain high stress and temperature. Metallic PMMs can be used under these extreme conditions, and have potential applications for aerospace, automobile and biomedical industries. However, an existing scientific challenge is that a simple translation of the proven polymer PMM design into metals is unsuccessful because most metals have magnitudes lower elastic strain limit than polymers leading to a low lifetime under cyclic loading. Without a complete structural redesign, the required mechanical properties would be extremely challenging to achieve in metallic PMMs. Although additive manufacturing (AM) offers the potential to fabricate complex geometry, the small dimension and complex geometry required to achieve functionality in metallic PMMs have reached its resolution limit. Hence, there is an urgent need to explore the fundamental AM processing mechanism that can achieve desirable small features with acceptable defect density and residual stresses. This project leverages the unique expertise of the Purdue team on manufacturing and Freiburg team on design to tackle this challenge. The international collaboration will enable students from both institutes to develop a solid foundation in both experiments and simulations through videoconferences and annual student exchanges. The objective of this project is to apply laser powder bed fusion to fabricate metallic PMMs and understand fundamentally the influence of hierarchical design and AM processing on microstructures, defect density, elastic strain limit and fatigue resistance. The project team plans to develop an integrated experimental and modeling platform that can significantly improve fundamental understandings on the manufacturing of metallic PMMs with superior mechanical performance (large global strain and fatigue resistance). This research will integrate AI-assisted computer design, AM modeling and processing, characterization and mechanical testing to identify architectures that can sustain large global strain with minimal local elastic strain. Purdue’s capability on in-situ small scale mechanical testing in SEM and Freiburg’s capability on fatigue testing of small structures will be integrated to understand the underlying deformation and fatigue mechanisms. If successful, this project will generate new knowledge about the influence of AM processing conditions on generation of internal defects and residual stress, as well as the consequent impact on fatigue properties of metallic PMMs. This project is also expected to lead to new structural redesign of PMM coupled with AM for metallic materials that offers the promise to sustain large elastic deformation, high stress and fatigue resistance, not attainable in polymeric PMMs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可编程机械超材料(PMM)通过特定的几何设计具有独特的机械性能和功能,而无需更改材料组成。当前的PMM主要由聚合物制成,该聚合物无法维持高应力和温度。金属PMM可以在这些极端条件下使用,并在航空航天,汽车和生物医学行业中有潜在的应用。但是,现有的科学挑战是,将验证的聚合物PMM设计简单地翻译成金属是不成功的,因为大多数金属的弹性应变极限低于导致循环载荷下寿命低的聚合物。如果没有完整的结构重新设计,则需要在金属PMM中实现所需的机械性能。尽管添加剂制造(AM)提供了制造复杂几何形状的潜力,但在金属PMM中实现功能所需的小维数和复杂的几何形状已达到其分辨率限制。因此,迫切需要探索基本的AM处理机制,该机制可以实现具有可接受的缺陷密度和残留应力的理想小特征。该项目利用了Purdue团队的独特专家制造业和Freiburg团队的设计,以应对这一挑战。国际合作将使来自两家学院的学生能够通过视频会议和年度学生交流在实验和模拟中建立坚实的基础。该项目的目的是将激光粉末床融合应用于制造金属PMM,并从根本上理解层次设计和AM处理对微结构,缺陷密度,弹性应变极限和疲劳耐药性的影响。该项目团队计划开发一个集成的实验和建模平台,该平台可以显着提高对具有卓越机械性能(大全球菌株和抗疲劳性)的金属PMM制造的基本理解。这项研究将整合AI辅助的计算机设计,AM建模和处理,表征和机械测试,以识别可以使用最小的局部弹性应变维持大全球应变的体系结构。普渡大学在SEM中的原位小规模机械测试和弗莱堡对小结构的疲劳测试的能力,如果成功,该项目将产生有关AM加工条件对内部缺陷和残留应力产生的影响的新知识,以及随之而来的对金属PMMS疲劳特性的影响。预计该项目还会导致PMM的新结构重新设计,加上AM的金属材料,提供了具有巨大的弹性变形,高压力和抗疲劳性的承诺,在聚合PMM中无法获得,这反映了NSF的法规任务,并通过评估诚实地使用基金会的知识分子来评估NSF的法规任务,并诚实地通过评估来进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinghang Zhang其他文献
Design of 3D Oxide–Metal Hybrid Metamaterial for Tailorable Light–Matter Interactions in Visible and Near‐Infrared Region
用于可见光和近红外区域可定制光-物质相互作用的 3D 氧化物-金属混合超材料设计
- DOI:
10.1002/adom.202001154 - 发表时间:
2020 - 期刊:
- 影响因子:9
- 作者:
Di Zhang;P. Lu;S. Misra;Ashley Wissel;Zihao He;Z. Qi;Xingyao Gao;Xing Sun;Juncheng Liu;Juanjuan Lu;Xinghang Zhang;Haiyan Wang - 通讯作者:
Haiyan Wang
Enhancement of Radiation Tolerance by Interfaces in Nanostructured Metallic Materials
- DOI:
10.21236/ada596809 - 发表时间:
2013-06 - 期刊:
- 影响因子:0
- 作者:
Xinghang Zhang - 通讯作者:
Xinghang Zhang
Tribology of incoloy 800HT for nuclear reactors under helium environment at elevated temperatures
高温氦环境下核反应堆用 incoloy 800HT 的摩擦学
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5
- 作者:
Saifur Rahman;Jie Ding;A. Beheshti;Xinghang Zhang;A. Polycarpou - 通讯作者:
A. Polycarpou
Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ consolidation of powders during mechanical attrition
机械研磨过程中粉末原位固结制备块状超细晶纳米结构 Zn、Al 及其合金
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xinghang Zhang;Haiyan Wang;M. Kassem;J. Narayan;C. Koch - 通讯作者:
C. Koch
3D Hybrid Trilayer Heterostructure: Tunable Au Nanorods and Optical Properties.
3D 混合三层异质结构:可调谐金纳米棒和光学特性。
- DOI:
10.1021/acsami.0c14937 - 发表时间:
2020 - 期刊:
- 影响因子:9.5
- 作者:
Xuejing Wang;Junho Choi;Juncheng Liu;O. Malis;Xiaoqin Li;P. Bermel;Xinghang Zhang;Haiyan Wang - 通讯作者:
Haiyan Wang
Xinghang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinghang Zhang', 18)}}的其他基金
Collaborative Research: Interface enabled plasticity in high-strength Co-based intermetallics
合作研究:高强度钴基金属间化合物的界面塑性
- 批准号:
2210152 - 财政年份:2022
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Deformation Mechanisms of Gradient Steels with High Strength and Ductility
高强高塑梯度钢的变形机制
- 批准号:
2217727 - 财政年份:2022
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Mechanics and Kinetics of Void Swelling in Irradiated Nanoporous Materials
辐照纳米多孔材料中空隙膨胀的力学和动力学
- 批准号:
1728419 - 财政年份:2017
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
- 批准号:
1642759 - 财政年份:2016
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
- 批准号:
1643915 - 财政年份:2016
- 资助金额:
$ 45.29万 - 项目类别:
Continuing Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
- 批准号:
1508366 - 财政年份:2015
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
- 批准号:
1304101 - 财政年份:2013
- 资助金额:
$ 45.29万 - 项目类别:
Continuing Grant
Friction and plasticity of amorphous metal coatings
非晶金属涂层的摩擦和塑性
- 批准号:
1161978 - 财政年份:2012
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Novel Magnetic Shape Memory Alloy Thin Films for Sensor and Actuator Applications
用于传感器和执行器应用的新型磁性形状记忆合金薄膜
- 批准号:
1129065 - 财政年份:2011
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Materials World Network: Novel Interface and Strain Control in Epitaxial Nanocomposite Films
材料世界网络:外延纳米复合薄膜中的新型界面和应变控制
- 批准号:
1007969 - 财政年份:2010
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
- 批准号:61107087
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
- 批准号:60878063
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
- 批准号:60577006
- 批准年份:2005
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Tuning Microtubule-Actin crosstalk to control Mitotic Fidelity
NSF/BIO-DFG:调节微管-肌动蛋白串扰以控制有丝分裂保真度
- 批准号:
2319918 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Cytochrome c oxidase adaptation to hypoxia in systemic vascular cells - From structure to function
NSF/BIO-DFG:细胞色素 c 氧化酶对全身血管细胞缺氧的适应 - 从结构到功能
- 批准号:
2329629 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF/BIO-DFG: The role of ARL 13B in controlling ciliary cAMP signaling
NSF/BIO-DFG:ARL 13B 在控制睫状 cAMP 信号传导中的作用
- 批准号:
2329634 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF-DFG: Multiscale Data-Physics Models for the Critical Role of Interfaces in Overmolded Thermoplastic Parts
NSF-DFG:多尺度数据物理模型显示界面在包覆成型热塑性零件中的关键作用
- 批准号:
2225290 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant