NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
基本信息
- 批准号:2228266
- 负责人:
- 金额:$ 45.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Programmable mechanical metamaterials (PMMs) have unique mechanical properties and functionalities through specific geometric designs without changing the material composition. Current PMMs are primarily made of polymer, which cannot sustain high stress and temperature. Metallic PMMs can be used under these extreme conditions, and have potential applications for aerospace, automobile and biomedical industries. However, an existing scientific challenge is that a simple translation of the proven polymer PMM design into metals is unsuccessful because most metals have magnitudes lower elastic strain limit than polymers leading to a low lifetime under cyclic loading. Without a complete structural redesign, the required mechanical properties would be extremely challenging to achieve in metallic PMMs. Although additive manufacturing (AM) offers the potential to fabricate complex geometry, the small dimension and complex geometry required to achieve functionality in metallic PMMs have reached its resolution limit. Hence, there is an urgent need to explore the fundamental AM processing mechanism that can achieve desirable small features with acceptable defect density and residual stresses. This project leverages the unique expertise of the Purdue team on manufacturing and Freiburg team on design to tackle this challenge. The international collaboration will enable students from both institutes to develop a solid foundation in both experiments and simulations through videoconferences and annual student exchanges. The objective of this project is to apply laser powder bed fusion to fabricate metallic PMMs and understand fundamentally the influence of hierarchical design and AM processing on microstructures, defect density, elastic strain limit and fatigue resistance. The project team plans to develop an integrated experimental and modeling platform that can significantly improve fundamental understandings on the manufacturing of metallic PMMs with superior mechanical performance (large global strain and fatigue resistance). This research will integrate AI-assisted computer design, AM modeling and processing, characterization and mechanical testing to identify architectures that can sustain large global strain with minimal local elastic strain. Purdue’s capability on in-situ small scale mechanical testing in SEM and Freiburg’s capability on fatigue testing of small structures will be integrated to understand the underlying deformation and fatigue mechanisms. If successful, this project will generate new knowledge about the influence of AM processing conditions on generation of internal defects and residual stress, as well as the consequent impact on fatigue properties of metallic PMMs. This project is also expected to lead to new structural redesign of PMM coupled with AM for metallic materials that offers the promise to sustain large elastic deformation, high stress and fatigue resistance, not attainable in polymeric PMMs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可编程机械超材料在不改变材料成分的情况下,通过特定的几何设计,具有独特的机械性能和功能。目前的PMMs主要由聚合物制成,不能承受高应力和高温度。金属pmmm可以在这些极端条件下使用,并且在航空航天,汽车和生物医学行业具有潜在的应用。然而,现有的一个科学挑战是,将经过验证的聚合物PMM设计简单地转化为金属是不成功的,因为大多数金属的弹性应变极限比聚合物低,导致循环载荷下的寿命较低。如果不进行完整的结构重新设计,在金属pmmm中实现所需的机械性能将极具挑战性。尽管增材制造(AM)提供了制造复杂几何形状的潜力,但在金属pmmm中实现功能所需的小尺寸和复杂几何形状已经达到了其分辨率极限。因此,迫切需要探索基本的增材制造加工机制,以获得理想的小特征和可接受的缺陷密度和残余应力。该项目利用普渡大学团队在制造和弗莱堡团队在设计方面的独特专业知识来应对这一挑战。国际合作将使两所学院的学生通过视频会议和年度学生交流,在实验和模拟方面打下坚实的基础。本项目的目标是应用激光粉末床融合技术制造金属pmmm,并从根本上了解分层设计和AM加工对微结构、缺陷密度、弹性应变极限和抗疲劳性能的影响。项目团队计划开发一个集成的实验和建模平台,可以显着提高对具有优越机械性能(大全局应变和抗疲劳)的金属PMMs制造的基本理解。该研究将整合人工智能辅助计算机设计、增材制造建模和处理、表征和机械测试,以确定能够以最小的局部弹性应变承受大全局应变的架构。Purdue在SEM中进行原位小型机械测试的能力和Freiburg在小型结构疲劳测试的能力将被整合,以了解潜在的变形和疲劳机制。如果成功,该项目将产生关于增材制造工艺条件对内部缺陷和残余应力产生影响的新知识,以及随之而来的对金属pmmm疲劳性能的影响。该项目还有望导致PMM与金属材料的增材制造相结合的新结构重新设计,提供了维持大弹性变形,高应力和抗疲劳性的承诺,这是聚合物pmmm无法实现的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinghang Zhang其他文献
Tribology of incoloy 800HT for nuclear reactors under helium environment at elevated temperatures
高温氦环境下核反应堆用 incoloy 800HT 的摩擦学
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5
- 作者:
Saifur Rahman;Jie Ding;A. Beheshti;Xinghang Zhang;A. Polycarpou - 通讯作者:
A. Polycarpou
Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ consolidation of powders during mechanical attrition
机械研磨过程中粉末原位固结制备块状超细晶纳米结构 Zn、Al 及其合金
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xinghang Zhang;Haiyan Wang;M. Kassem;J. Narayan;C. Koch - 通讯作者:
C. Koch
Variation model of north-south plant species diversity in the Qinling-Daba Mountains in China
- DOI:
10.1016/j.gecco.2022.e02190 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:3.400
- 作者:
Xinghang Zhang;Baiping Zhang;Yonghui Yao;Junjie Liu;Jing Wang;Fuqin Yu;Jiayu Li - 通讯作者:
Jiayu Li
Design of 3D Oxide–Metal Hybrid Metamaterial for Tailorable Light–Matter Interactions in Visible and Near‐Infrared Region
用于可见光和近红外区域可定制光-物质相互作用的 3D 氧化物-金属混合超材料设计
- DOI:
10.1002/adom.202001154 - 发表时间:
2020 - 期刊:
- 影响因子:9
- 作者:
Di Zhang;P. Lu;S. Misra;Ashley Wissel;Zihao He;Z. Qi;Xingyao Gao;Xing Sun;Juncheng Liu;Juanjuan Lu;Xinghang Zhang;Haiyan Wang - 通讯作者:
Haiyan Wang
Enhancement of Radiation Tolerance by Interfaces in Nanostructured Metallic Materials
- DOI:
10.21236/ada596809 - 发表时间:
2013-06 - 期刊:
- 影响因子:0
- 作者:
Xinghang Zhang - 通讯作者:
Xinghang Zhang
Xinghang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinghang Zhang', 18)}}的其他基金
Collaborative Research: Interface enabled plasticity in high-strength Co-based intermetallics
合作研究:高强度钴基金属间化合物的界面塑性
- 批准号:
2210152 - 财政年份:2022
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Deformation Mechanisms of Gradient Steels with High Strength and Ductility
高强高塑梯度钢的变形机制
- 批准号:
2217727 - 财政年份:2022
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Mechanics and Kinetics of Void Swelling in Irradiated Nanoporous Materials
辐照纳米多孔材料中空隙膨胀的力学和动力学
- 批准号:
1728419 - 财政年份:2017
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
- 批准号:
1642759 - 财政年份:2016
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
- 批准号:
1643915 - 财政年份:2016
- 资助金额:
$ 45.29万 - 项目类别:
Continuing Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
- 批准号:
1508366 - 财政年份:2015
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
- 批准号:
1304101 - 财政年份:2013
- 资助金额:
$ 45.29万 - 项目类别:
Continuing Grant
Friction and plasticity of amorphous metal coatings
非晶金属涂层的摩擦和塑性
- 批准号:
1161978 - 财政年份:2012
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Novel Magnetic Shape Memory Alloy Thin Films for Sensor and Actuator Applications
用于传感器和执行器应用的新型磁性形状记忆合金薄膜
- 批准号:
1129065 - 财政年份:2011
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Materials World Network: Novel Interface and Strain Control in Epitaxial Nanocomposite Films
材料世界网络:外延纳米复合薄膜中的新型界面和应变控制
- 批准号:
1007969 - 财政年份:2010
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Tuning Microtubule-Actin crosstalk to control Mitotic Fidelity
NSF/BIO-DFG:调节微管-肌动蛋白串扰以控制有丝分裂保真度
- 批准号:
2319918 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Cytochrome c oxidase adaptation to hypoxia in systemic vascular cells - From structure to function
NSF/BIO-DFG:细胞色素 c 氧化酶对全身血管细胞缺氧的适应 - 从结构到功能
- 批准号:
2329629 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF/BIO-DFG: The role of ARL 13B in controlling ciliary cAMP signaling
NSF/BIO-DFG:ARL 13B 在控制睫状 cAMP 信号传导中的作用
- 批准号:
2329634 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF-DFG: Multiscale Data-Physics Models for the Critical Role of Interfaces in Overmolded Thermoplastic Parts
NSF-DFG:多尺度数据物理模型显示界面在包覆成型热塑性零件中的关键作用
- 批准号:
2225290 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
- 批准号:
2302577 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
- 批准号:
2234270 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2346885 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
NSF-DFG: Solvent-Free Manufacturing of Perovskite Large-Scale Electronics
NSF-DFG:钙钛矿大型电子产品的无溶剂制造
- 批准号:
2135937 - 财政年份:2022
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant
Collaborative Research: NSF-DFG: CAS: Electrochemical Hydrogenation of Amides and Esters
合作研究:NSF-DFG:CAS:酰胺和酯的电化学氢化
- 批准号:
2140205 - 财政年份:2022
- 资助金额:
$ 45.29万 - 项目类别:
Standard Grant