CAREER: Renormalization and higher rank parabolic actions
职业生涯:重整化和更高阶的抛物线作用
基本信息
- 批准号:2143133
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This project aims to advance knowledge on parabolic systems, which refer to a class of complex systems that appear in many areas of mathematics as well as physics. There is a significant educational component: this project plans to support the activities of the Laboratory of Experimental Mathematics, of which the PI is a co-director, as well as the Girls Talk Math (GTM) program, both hosted at the University of Maryland. The former activity is aimed at engaging undergraduate students in research, and the latter at attracting high-school students from underrepresented groups towards the STEM-disciplines.Parabolic systems are the types of dynamical systems that are neither chaotic (that is, exhibit exponential complexity), nor completely rigid. Parabolic systems typically exhibit a type of polynomial complexity. An example of one such system is the motion of a particle on a frictionless and pocketless billiard table of non-rectangular polygonal shape with completely elastic collisions at the boundary. Higher rank parabolic systems appear in the study of aperiodic tilings, closely connected to applications to mathematical physics. Parabolic systems can be studied through techniques known as renormalization methods. A significant component of the project is devoted to developing renormalization tools in the language of operator algebras, that is, using invariants coming from operator algebras to obtain dynamical invariants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。该项目旨在推进抛物系统的知识,抛物系统指的是一类复杂系统,出现在数学和物理的许多领域。有一个重要的教育组成部分:该项目计划支持实验数学实验室的活动,PI是其中的联合主任,以及女孩谈论数学(GTM)计划,两者都在马里兰大学主持。前一项活动旨在吸引本科生参与研究,后一项活动旨在吸引来自代表性不足群体的高中生进入stem学科。抛物系统是一种既不是混沌的(即表现出指数复杂性),也不是完全刚性的动力系统。抛物型系统通常表现出一种多项式复杂度。一个这样的系统的例子是一个粒子在一个无摩擦和无口袋的非矩形多边形台球桌上的运动,在边界有完全弹性碰撞。高阶抛物系统出现在非周期平铺的研究中,与数学物理的应用密切相关。抛物系统可以通过称为重整化方法的技术来研究。该项目的一个重要组成部分是致力于开发算子代数语言中的重整化工具,即使用来自算子代数的不变量来获得动态不变量。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodrigo Trevino其他文献
Examining parent-teacher communication in school systems through the use of emergent technologies
通过使用新兴技术检查学校系统中家长与教师的沟通
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Rodrigo Trevino - 通讯作者:
Rodrigo Trevino
Rodrigo Trevino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodrigo Trevino', 18)}}的其他基金
Ergodic Theory of Foliated Spaces through Geometric Deformations
通过几何变形的叶状空间的遍历理论
- 批准号:
1665100 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Ergodic Theory of Foliated Spaces through Geometric Deformations
通过几何变形的叶状空间的遍历理论
- 批准号:
1759610 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
International conference & workshop on flat surfaces of infinite type
国际会议
- 批准号:
1313856 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
- 批准号:
23H01092 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Renormalization and Visualization for packings, billiards and surfaces
会议:包装、台球和表面的重整化和可视化
- 批准号:
2333366 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
- 批准号:
2301627 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory
复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论
- 批准号:
2154414 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
- 批准号:
22K14038 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Tensor renormalization group study of (3+1)-dimensional systems with the sign problem
(3 1) 维系统的符号问题的张量重整化群研究
- 批准号:
21J11226 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows