CAREER: Optimal High-Dimensional Estimators Using Sum-of-Squares Proof Systems
职业:使用平方和证明系统的最优高维估计器
基本信息
- 批准号:2143246
- 负责人:
- 金额:$ 64.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Statistical estimation problems are ubiquitous in the modern world. A multitude of important machine-learning tasks fall under the umbrella of estimation, including regression, principal components analysis, and clustering. In the sciences more broadly, estimating parameters from data is crucial to the pursuit of knowledge: in Biology, estimating protein network structure; in Astronomy and Physics, estimating the spatial locations of stellar objects from diffraction patters; in Biochemistry, estimating the three-dimensional structure of a protein from spectroscopy and imaging data; and so on. In high-dimensional settings, where the quantities to be estimated describe large, complicated systems, the role of efficient computation is crucial. Despite the ubiquity of high-dimensional statistical estimation problems, understanding of their computational landscape remains primitive.The goal of this project is to develop and characterize optimal estimation algorithms through the lens of the sum-of-squares (SoS) algorithm and proof system. The sum-of-squares algorithm is a powerful class of semidefinite programming algorithms which are among the most powerful known algorithms (empirically and in a precise sense), while their relationship to the sum-of-squares proof system also allows for a systematic approach to algorithm design. The project is organized into three primary thrusts: (i) predicting the computational limits of statistical estimation with SoS, giving a unified theory for automatically predicting the computational limits of our most powerful algorithms; (ii) giving optimal algorithms for estimation via SoS for important problems such as clustering, graphical models, and block models; (iii) making sum-of-squares algorithms practical, replacing optimization over SoS programs with lightweight algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计估计问题在现代世界无处不在。许多重要的机器学习任务都属于估计的范畴,包括回归、主成分分析和聚类。在更广泛的科学领域,从数据中估计参数对于追求知识至关重要:在生物学中,估计蛋白质网络结构;在天文学和物理学中,从衍射模式估计恒星物体的空间位置;在生物化学中,从光谱和成像数据估计蛋白质的三维结构;等等......。在高维环境中,待估计的数量描述了大型、复杂的系统,高效计算的作用至关重要。尽管高维统计估计问题无处不在,但对它们的计算景观的理解仍然很原始。该项目的目标是通过平方和(SoS)算法和证明系统来开发和表征最优估计算法。平方和算法是一类功能强大的半确定规划算法,是已知最强大的算法之一(从经验和精确的意义上说),而它们与平方和证明系统的关系也允许系统的算法设计方法。该项目分为三个主要重点:(i)用SoS预测统计估计的计算极限,给出一个统一的理论来自动预测我们最强大的算法的计算极限;(ii)针对诸如聚类、图形模型和块模型等重要问题,给出通过SoS进行估计的最佳算法;(iii)使平方和算法实用,用轻量级算法取代对SoS程序的优化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local and Global Expansion in Random Geometric Graphs
随机几何图中的局部和全局扩展
- DOI:10.1145/3564246.3585106
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Siqi;Mohanty, Sidhanth;Schramm, Tselil;Yang, Elizabeth
- 通讯作者:Yang, Elizabeth
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tselil Schramm其他文献
Tselil Schramm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Statistical Optimal Transport in High Dimensional Mixtures
合作研究:高维混合物中的统计最优传输
- 批准号:
2210563 - 财政年份:2022
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
- 批准号:
RGPIN-2019-04464 - 财政年份:2022
- 资助金额:
$ 64.95万 - 项目类别:
Discovery Grants Program - Individual
Study on an Efficient Unified Method for Obtaining Optimal Design of the Multi-Dimensional, Multi-State and Multi-Objective Network System Considering Similar Shape of Graphs
考虑图相似形状的多维、多状态、多目标网络系统优化设计的高效统一方法研究
- 批准号:
22K04603 - 财政年份:2022
- 资助金额:
$ 64.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
- 批准号:
2210505 - 财政年份:2022
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Optimal Transport in High Dimensional Mixtures
合作研究:高维混合物中的统计最优传输
- 批准号:
2210583 - 财政年份:2022
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Optimal Sensing of Multi-Dimensional Datasets in Scanning Electron Microscopy (SEM)
扫描电子显微镜 (SEM) 中多维数据集的最佳传感
- 批准号:
2748892 - 财政年份:2022
- 资助金额:
$ 64.95万 - 项目类别:
Studentship
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
- 批准号:
2210506 - 财政年份:2022
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Clarify the optimal environment for ACL regeneration by investigating about crosstalk between cells and 4-dimensional analysis.
通过研究细胞之间的串扰和 4 维分析,阐明 ACL 再生的最佳环境。
- 批准号:
21K17472 - 财政年份:2021
- 资助金额:
$ 64.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stochastic Optimal Control with High Dimensional Data
高维数据的随机最优控制
- 批准号:
2106462 - 财政年份:2021
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
- 批准号:
RGPIN-2019-04464 - 财政年份:2021
- 资助金额:
$ 64.95万 - 项目类别:
Discovery Grants Program - Individual