CAREER: Machine Learning for Data-Driven Fault-Tolerant Control of Complex Systems

职业:用于复杂系统数据驱动容错控制的机器学习

基本信息

  • 批准号:
    2143268
  • 负责人:
  • 金额:
    $ 59.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) project will create new knowledge about the dynamic behavior and control of complex systems; specifically, how to predict rare deleterious events in complex systems, and how to control these systems when faults occur to achieve a desired performance. Complex systems are networks comprising many collaborating elements that continuously interact with each other in a nonlinear and counterintuitive manner; examples include cybersecurity, manufacturing processes, automated transportation infrastructure, medical devices, and many others relevant to our well-being. Faults in these systems are malfunctions, such as cyber-attack or sensor failure, that break security, degrade system functionality, and cause safety concerns and economic losses. Control of these systems is challenging because the dynamic behavior of the ensemble is intrinsically difficult to predict. This award supports fundamental research to build a “fault-aware” control framework to study how interactions among individual elements produce the collective’s dynamics and how to alleviate the effect of faults on complex systems. To develop and test the control framework, a failing heart managed by a ventricular assist device will be used as the foundation to (i) detect device faults such as thrombosis and suction that jeopardize the survival of heart failure patients and (ii) automatically adjust the operation of the device under faults to improve the patient quality of life. The educational and outreach plan will focus on promoting active and life-long learning and engaging and training students at various levels, including veterans transitioning to civilian life, in emerging industries and transdisciplinary skills.Using machine learning as the backbone, the objective of this research is to create a data-driven control strategy that regulates and maintains the system’s homeostasis following the onset of faults, while ensuring the system continues to operate in a seamless, continuous manner. This research will fill the knowledge gap for the supervision and control of complex systems when the governing phenomena are unknown and when first principle models are not readily attainable. The data-driven strategy will also overcome design limitations. Designing complex systems, such as ventricular assist devices, based on first principle models is costly, time consuming, and requires extensive expert knowledge to build application-specific models based on ubiquitous assumptions that are difficult to satisfy in practice. This research project will integrate data analytics, control theory, and machine learning into a unified framework with three innovative aspects: developing machine learning methods to discover symptomatic fingerprints of faults directly from data for real-time fault diagnosis; building an online adaptive modeling paradigm to predict performance-related variables that are not directly measurable due to economic considerations or technical constraints; designing a fault-tolerant controller to improve the system’s performance, while ensuring all operational constraints are met. In addition to its application to ventricular assist devices, this framework can be applied to protect computer systems from digital attacks, improve manufacturing efficiency, and address safety issues in automated transportation infrastructure and medical devices, leading to compelling societal and economic benefits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展(CAREER)项目将创造有关复杂系统的动态行为和控制的新知识;具体来说,如何预测复杂系统中罕见的有害事件,以及如何在故障发生时控制这些系统以实现预期的性能。复杂系统是由许多协作元素组成的网络,这些元素以非线性和违反直觉的方式不断相互作用;例如网络安全,制造过程,自动化交通基础设施,医疗设备以及许多与我们的福祉相关的其他因素。这些系统中的故障是故障,例如网络攻击或传感器故障,这些故障破坏安全性,降低系统功能,并导致安全问题和经济损失。这些系统的控制是具有挑战性的,因为合奏的动态行为本质上是难以预测的。该奖项支持建立“故障感知”控制框架的基础研究,以研究单个元素之间的相互作用如何产生集体的动态,以及如何减轻故障对复杂系统的影响。为了开发和测试控制框架,将使用心室辅助设备管理的衰竭心脏作为基础,以(i)检测危及心力衰竭患者生存的血栓形成和抽吸等设备故障,以及(ii)在故障下自动调整设备的操作,以改善患者的生活质量。教育和推广计划将侧重于促进积极和终身学习,并吸引和培训各级学生,包括退伍军人过渡到平民生活,新兴行业和跨学科技能。本研究的目标是以机器学习为骨干,创建一个数据驱动的控制策略,在故障发生后调节和维持系统的稳态,同时确保系统继续以无缝、连续的方式操作。这项研究将填补知识空白的监督和控制的复杂系统时,执政的现象是未知的,当第一原理模型是不容易实现的。数据驱动战略还将克服设计限制。基于第一原理模型来设计复杂系统(诸如心室辅助装置)是昂贵的、耗时的,并且需要广泛的专业知识来基于在实践中难以满足的普遍存在的假设来构建应用特定的模型。该研究项目将数据分析、控制理论和机器学习整合到一个统一的框架中,具有三个创新方面:开发机器学习方法,直接从数据中发现故障的症状指纹,用于实时故障诊断;建立在线自适应建模范式,预测由于经济考虑或技术限制而无法直接测量的性能相关变量;设计容错控制器以提高系统的性能,同时确保满足所有操作约束。除了应用于心室辅助设备之外,该框架还可以应用于保护计算机系统免受数字攻击,提高制造效率,并解决自动化运输基础设施和医疗设备中的安全问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuncheng Du其他文献

Robust Self-Tuning Control under Probabilistic Uncertainty using Generalized Polynomial Chaos Models
使用广义多项式混沌模型的概率不确定性下的鲁棒自调节控制
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuncheng Du;H. Budman;T. Duever
  • 通讯作者:
    T. Duever
Gaussian Process-Based Spatiotemporal Modeling of Electrical Wave Propagation in Human Atrium*
基于高斯过程的人体心房电波传播时空建模*
Integration of fault diagnosis and control by finding a trade-off between the detectability of stochastic fault and economics
通过寻找随机故障的可检测性和经济性之间的权衡来实现故障诊断和控制的集成
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuncheng Du;H. Budman;T. Duever
  • 通讯作者:
    T. Duever
Machine learning approaches to analyze the effect of reaction parameters on ZIF-8 synthesis
  • DOI:
    10.1016/j.cplett.2024.141790
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuncheng Du;Dongping Du
  • 通讯作者:
    Dongping Du
Classification Algorithms based on Generalized Polynomial Chaos
  • DOI:
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuncheng Du
  • 通讯作者:
    Yuncheng Du

Yuncheng Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuncheng Du', 18)}}的其他基金

CAREER: Machine Learning for Data-Driven Fault-Tolerant Control of Complex Systems
职业:用于复杂系统数据驱动容错控制的机器学习
  • 批准号:
    2426614
  • 财政年份:
    2023
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Personalized Modeling, Monitoring and Control for Advancing Ventricular Assist Device Therapy in End-stage Heart Failure
合作研究:个性化建模、监测和控制,以推进心室辅助装置治疗终末期心力衰竭
  • 批准号:
    1727487
  • 财政年份:
    2017
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 59.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了