CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
基本信息
- 批准号:2143710
- 负责人:
- 金额:$ 59.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The industrial production of fertilizer – produced from ammonia (NH3) generated by the energy-intensive, fossil fuel-dependent Haber-Bosch (H-B) process - has disrupted the natural nitrogen cycle, resulting in groundwater pollution from nitrates (NO3-). The project utilizes electrochemistry to react nitrate compounds with hydrogen (derived sustainably from water) to manufacture NH3, while simultaneously decomposing the nitrate pollutants and restoring balance to the nitrogen cycle. Specifically, the research focuses on the discovery and design of catalysts that enable efficient nitrate-to-ammonia transformation driven by renewable electricity. Beyond the technical aspects, the project will train students from diverse groups at the interface of catalysis, chemistry, and engineering. The research will be integrated with educational and outreach efforts to illustrate the importance of sustainability in daily life while stimulating excitement for STEM amongst K-12 youth, especially those from low-income families. The electrochemical nitrate reduction reaction (NO3RR) offers a potentially attractive distributed NH3 production route, because it utilizes nitrate pollutants as the N-source, thus circumventing activation of the strong N≡N triple bond associated with the H-B process. The project will develop design strategies for single-atom alloy (SAA) electrocatalysts for the NO3RR and advance the fundamental understanding of both the catalytic active sites and the elementary mechanisms. The project is built on the central hypothesis that surface doping of Cu nanocrystals with isolated metal atoms (for example, Pt, Pd, Rh, or Ru) creates well-defined sites that activate water molecules and generate H-atoms that spill over to the Cu. The H-atoms hydrogenate N-species at low overpotentials and selectively tailoring of the binding strength of NO3RR surface intermediates through narrowly distributed d-states of single atoms for high-rate production of NH3, can potentially go beyond adsorption-energy scaling limitations. Catalyst synthesis, characterization, and electrochemical evaluation will be facilitated by advanced characterization techniques including operando surface-enhanced infrared absorption spectroscopy, differential electrochemical mass spectrometry, in-situ X-ray absorption spectroscopy, advanced electron microscopy, and computational tools such as density functional theory. The educational components of the project include (1) integrating research into the curriculum, (2) interdisciplinary student training, (3) involving diverse underrepresented students in science and engineering, and (4) implementing STEM-based outreach programs through the Center for Enhancement of Engineering Diversity at Virginia Tech and summer programs at Wonder Universe: A Children’s Museum. In addition, the newly launched Virginia Clean Energy and Catalysis Club will be leveraged as a platform to promote student training. The outreach plan also includes the development of an interactive play-based pedagogical platform, “Sustainable City in Minecraft,” that will provide young students the opportunity to design and construct a futuristic sustainable city.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化肥的工业生产--由依赖化石燃料的能源密集型哈伯-博世(H-B)工艺产生的氨(NH3)生产--破坏了自然氮循环,导致地下水受到硝酸盐(NO3-)的污染。该项目利用电化学将硝酸盐化合物与氢气(可持续地从水中提取)反应,以制造NH3,同时分解硝酸盐污染物并恢复氮循环的平衡。具体而言,该研究的重点是发现和设计催化剂,使可再生电力驱动的高效硝酸盐转化为氨。除了技术方面,该项目还将在催化,化学和工程的界面上培养来自不同群体的学生。 该研究将与教育和推广工作相结合,以说明可持续性在日常生活中的重要性,同时激发K-12青年,特别是低收入家庭青年对STEM的兴奋。电化学硝酸盐还原反应(NO3 RR)提供了一种潜在的有吸引力的分布式NH3生产途径,因为它利用硝酸盐污染物作为N源,从而避免了与H-B过程相关的强N-N三键的活化。 该项目将开发用于NO3 RR的单原子合金(SAA)电催化剂的设计策略,并推进对催化活性位点和基本机制的基本理解。该项目建立在中心假设的基础上,即用孤立的金属原子(例如,Pt,Pd,Rh或Ru)对Cu纳米晶体进行表面掺杂,产生明确的位点,激活水分子并产生溢出到Cu的H原子。H-原子在低过电位和选择性剪裁的NO3 RR表面中间体的结合强度通过窄分布的单原子的d-状态的NH3的高速率生产的N-物种,可以潜在地超越吸附能量缩放限制。催化剂的合成,表征和电化学评价将促进先进的表征技术,包括operando表面增强红外吸收光谱,差分电化学质谱,原位X射线吸收光谱,先进的电子显微镜和计算工具,如密度泛函理论。该项目的教育部分包括(1)将研究融入课程,(2)跨学科学生培训,(3)让科学和工程领域代表性不足的多元化学生参与其中,以及(4)通过增强中心实施基于STEM的外展计划弗吉尼亚理工大学工程多样性和Wonder Universe:A Children's Museum的夏季项目。此外,新成立的弗吉尼亚清洁能源和催化俱乐部将作为促进学生培训的平台。该推广计划还包括开发一个基于游戏的互动教学平台,“Minecraft中的可持续城市”,这将为年轻学生提供设计和建造未来可持续城市的机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiyuan Zhu其他文献
Validation of 1D model for methane/air/Pt combustion in a stagnation flow
停滞流中甲烷/空气/Pt 燃烧的一维模型验证
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Minghou Liu;Dan Xing;Yuzhou Lu;Huiyuan Zhu - 通讯作者:
Huiyuan Zhu
Feasibility of Sub-milliSievert Low-dose Computed Tomography with Deep Learning Image Reconstruction in Evaluating Pulmonary Subsolid Nodules: A Prospective Intra-individual Comparison Study
深度学习图像重建的亚毫西弗低剂量计算机断层扫描在评估肺部亚实性结节中的可行性:一项前瞻性个体内比较研究
- DOI:
10.1016/j.acra.2024.11.042 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.900
- 作者:
Huiyuan Zhu;Zike Huang;Qunhui Chen;Weiling Ma;Jiahui Yu;Shiqing Wang;Guangyu Tao;Jun Xing;Haixin Jiang;Xiwen Sun;Jing Liu;Hong Yu;Lin Zhu - 通讯作者:
Lin Zhu
Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance
通过气体驱动剥离形成少层石墨烯以增强超级电容性能
- DOI:
10.1016/j.jechem.2017.09.018 - 发表时间:
2017-09 - 期刊:
- 影响因子:13.1
- 作者:
Peiwen Wu;Jing He;Linlin Chen;Yingcheng Wu;Hongping Li;Huiyuan Zhu;Huaming Li;Wenshuai Zhu - 通讯作者:
Wenshuai Zhu
Clinical Research of Exhaled Nitric Oxide Measurements in Patients With Chronic Obstructive Pulmonary Disease
- DOI:
10.1016/j.chest.2016.02.384 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Huiyuan Zhu;Guojun Zhang;Jingshuo Wu;Zhong Zhang;Yahong Lan;Qian Yang;Xiaolin Li;Lina Zhou;Aixin Zhang;Peipei Wu - 通讯作者:
Peipei Wu
Mesoporous Carbon-supported Ultrasmall Metal Nanoparticles via a Mechanochemical-driven Redox Reaction: A “Two-in-One” Strategy
通过机械化学驱动的氧化还原反应制备介孔碳支撑的超小金属纳米粒子:“二合一”策略
- DOI:
10.1016/j.apcatb.2021.120232 - 发表时间:
2021-04 - 期刊:
- 影响因子:22.1
- 作者:
Tian Jin;Xiaofei Liu;Ya-Qiong Su;Fenghongkang Pan;Xue Han;Huiyuan Zhu;Rongqian Wu;Yi Lyu - 通讯作者:
Yi Lyu
Huiyuan Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huiyuan Zhu', 18)}}的其他基金
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2332802 - 财政年份:2023
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant
CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
- 批准号:
2317302 - 财政年份:2023
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2102363 - 财政年份:2021
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant
相似国自然基金
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant
Electrocatalytic Cross-Coupling Reactions with Heterogeneous Single Atom Catalysts
多相单原子催化剂的电催化交叉偶联反应
- 批准号:
EP/Y002628/1 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Research Grant
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
- 批准号:
EP/V048333/2 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Research Grant
CAREER: Engineering the Reactivity of Single Atom Electrocatalysts Beyond their Active Site
职业:设计单原子电催化剂的活性位点之外的反应性
- 批准号:
2340693 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
Synchrotron Operando Spectroscopy for Electrochemical reduction of Single-Atom Alloy Ca talysts
单原子合金催化剂电化学还原的同步加速器操作光谱
- 批准号:
22KF0074 - 财政年份:2023
- 资助金额:
$ 59.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Oxidative destruction of refractory organic matter by titania-based metal single-atom co-catalyst
二氧化钛基金属单原子助催化剂氧化破坏难降解有机物
- 批准号:
22KF0180 - 财政年份:2023
- 资助金额:
$ 59.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows