CAREER: Synergistic activities in automorphic forms and education
职业:自守形式和教育的协同活动
基本信息
- 批准号:2144021
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). A large swath of modern number theory is concerned with the study of symmetry. One way in which symmetry arises in number theory is through Galois theory: this is the study of the symmetry of solution sets of polynomial equations over the rational numbers. Another way in which symmetry arises in number theory is through analysis: there are a class of special functions, called automorphic forms that satisfy a certain set of differential equations and possess an infinite group of discrete symmetries. The conjectural Langlands Program relates Galois theory to automorphic forms, even though on first appearance the two areas of mathematics have nothing to do with one another. This project concerns the study of automorphic forms, especially those that exhibit "exceptional" groups of symmetries. The Principal Investigator will investigate the subtle and surprising connections that automorphic forms have to arithmetic. He will also study L-functions of automorphic forms, which are generalizations of the Riemann zeta function. The grant includes funding for graduate students, who will receive training in automorphic forms. While supported by this grant, the Principal Investigator will write a graduate textbook on "exceptional algebraic structures", which will fill a need in the literature. He will also help train the US workforce through mentoring of undergraduates and early-career colleagues.This award has three related research projects. In one project, already underway, the Principal Investigator will develop the theory of half-integral weight modular forms on exceptional groups. It is expected that the Fourier coefficients of these half-integral weight modular forms will be highly interesting arithmetic quantities. The second project involves the production of modular forms on the exceptional group G_2 with rational Fourier coefficients and development of arithmetic consequences of the existence of such modular forms. This will lead to a partial database of modular forms on G_2. In a third project, the Principal Investigator will construct new automorphic L-functions. Techniques involved in these projects include the theta correspondence and the Rankin-Selberg method.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。大量的现代数论与对称性研究有关。对称在数论中出现的一种方式是通过伽罗瓦理论:这是对有理数上多项式方程解集对称性的研究。数论中出现对称性的另一种方式是通过分析:有一类特殊函数,称为自同构形式,满足某一组微分方程,并具有无限组离散对称性。推测的朗兰兹纲领将伽罗瓦理论与自同构形式联系起来,尽管乍一看这两个数学领域彼此没有任何关系。这个项目涉及自同构形式的研究,特别是那些表现出“特殊”对称群的形式。首席研究员将研究自同构形式与算术之间微妙而令人惊讶的联系。他还将研究自同构形式的l函数,它是黎曼ζ函数的推广。该补助金包括为研究生提供的资金,他们将接受自同构形式的培训。在此资助下,首席研究员将撰写一本关于“特殊代数结构”的研究生教材,以填补文献的需求。他还将通过指导本科生和初入职场的同事,帮助培训美国劳动力。该奖项有三个相关的研究项目。在一个正在进行的项目中,首席研究员将开发特殊群的半积分权模形式理论。预计这些半积分权模形式的傅里叶系数将是非常有趣的算术量。第二个项目涉及到具有有理傅立叶系数的例外群G_2的模形式的产生和这种模形式存在的算术结果的发展。这将导致G_2上的模形式的部分数据库。在第三个项目中,首席研究员将构建新的自同构l函数。这些项目涉及的技术包括theta对应和Rankin-Selberg方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Pollack其他文献
Rankin-Selberg integrals in many complex variables and Rankin-Selberg integrals associated to non-unique models
许多复杂变量中的 Rankin-Selberg 积分以及与非唯一模型相关的 Rankin-Selberg 积分
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Aaron Pollack - 通讯作者:
Aaron Pollack
Exceptional Groups and Their Modular Forms
- DOI:
10.1090/noti2226 - 发表时间:
2021-02 - 期刊:
- 影响因子:0
- 作者:
Aaron Pollack - 通讯作者:
Aaron Pollack
The quaternionic Maass Spezialschar on split $\mathrm{SO}(8)$
分裂 $mathrm{SO}(8)$ 上的四元数 Maass Spezialschar
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jennifer Johnson;Finn McGlade;Isabella Negrini;Aaron Pollack;Manami Roy - 通讯作者:
Manami Roy
Exceptional theta functions and arithmeticity of modular forms on $G_2$
$G_2$ 上出色的 theta 函数和模形式的算术性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Aaron Pollack - 通讯作者:
Aaron Pollack
Computation of Fourier coefficients of automorphic forms of type $G_2$
$G_2$ 类型自守形式的傅里叶系数的计算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aaron Pollack - 通讯作者:
Aaron Pollack
Aaron Pollack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Pollack', 18)}}的其他基金
相似海外基金
Immunological Mechanisms of Synergistic Anti-cancer Activities by Activation of TLR9 and STING
TLR9 和 STING 激活协同抗癌活性的免疫学机制
- 批准号:
19K16833 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synergistic Network to Enhance Research that Grows Innovation
协同网络加强研究促进创新
- 批准号:
10364629 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Synergistic Network to Enhance Research that Grows Innovation
协同网络加强研究促进创新
- 批准号:
10112918 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Synergistic Network to Enhance Research that Grows Innovation
协同网络加强研究促进创新
- 批准号:
10578728 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
A Geographical Perspective on Women's Rural-bound Mobility, their Innovative and Synergistic Entrepreneurial Activities and their Contribution to Sustainable Rural Development in Japan and the EU
日本和欧盟女性农村流动、创新协同创业活动及其对可持续农村发展的贡献的地理视角
- 批准号:
26580144 - 财政年份:2014
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
TUES: Development and Integration of Synergistic Computational and Experimental Activities within the Mechanical and Manufacturing Engineering Curriculum
TUES:机械和制造工程课程中协同计算和实验活动的开发和整合
- 批准号:
1044698 - 财政年份:2011
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Postural synergistic activities during recovery from fatigue of the postural muscles on throwing movement in a standing position.
站立投掷运动中姿势肌肉疲劳恢复期间的姿势协同活动。
- 批准号:
22570229 - 财政年份:2010
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STUDIES ON THE PREVENTION OF LIFESTYLE-RELATED DISEASES BY THE RESULTS OF SYNERGISTIC ACTIVITIES WITH INHABITANTS
通过与居民协同活动的结果来预防与生活方式相关的疾病的研究
- 批准号:
21890042 - 财政年份:2009
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Synergistic effects of HIV and age on naive CD4+ T-cell senescence
HIV 和年龄对幼稚 CD4 T 细胞衰老的协同作用
- 批准号:
8310978 - 财政年份:2008
- 资助金额:
$ 42.5万 - 项目类别:
Synergistic effects of HIV and age on naive CD4+ T-cell senescence
HIV 和年龄对幼稚 CD4 T 细胞衰老的协同作用
- 批准号:
7679053 - 财政年份:2008
- 资助金额:
$ 42.5万 - 项目类别: