CAREER: Probing Multiscale Growth Dynamics in Filamentous Cell Walls

职业:探索丝状细胞壁的多尺度生长动力学

基本信息

  • 批准号:
    2144372
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Various plants and fungi rely on filamentous growth to develop, reproduce, or survive under environmental stress. For example, the growth of root hairs with one-cell width effectively increases the surface area of the plant roots to absorb water and nutrients. Although experimental approaches have been able to track cell wall morphology and kinematics on the expanding cell wall surface for more than a century, the regulation of cell wall growth needs further elucidation. This project will develop mathematical models and computational methods to simulate the cell wall expansion due to the spatial patterning of new cell wall materials and mechanical interaction with the cell interior. Further, inference methods will be devised to predict the spatial patterning of wall-material trafficking from the cell wall geometry and quantify how volume growth inside the cell wall is distributed and rearranged to sustain the cell wall geometry during expansion and under mechanical constraints. The methods developed in this research can be applied to filamentous growth systems such as pollen tubes, root hairs, fungus hyphae, thus having significant implications in advancing agriculture and improving public health. Complementary to the research, the investigator will engage students, including K-12, undergraduate, and graduate students, in research mentorship, journal clubs, and a new interactive learning platform "Filaform”, to promote interest and transdisciplinary understanding of this biological process by leveraging geometry and other mathematics in conjunction with modern and emerging experimental techniques. To reach the research and education goals, two complementary mathematical models at different scales will be developed. The first will be a thin-shell model approximating the cell wall surface as a growing elastic boundary inflated by turgor pressure from the cell interior. Cubic-spline solutions will be developed to simulate the evolution of surface growth under the influence of turgor pressure and the distribution of exocytosis, a process that distributes new cell wall material along the cell wall interior surface. In addition, an inverse problem coupled with a subset of the model equations will be formulated to infer the distribution of exocytosis given the steady-state cell shape. Taking the exocytosis distribution as an input, the second model will be a three-dimensional model that describes the growth distribution and directionality (anisotropy) across the cell wall thickness. An energy-based material-point method will be developed to simulate the dynamics of the moving cell-wall domain. The investigator will infer the spatial map of the volume growth and anisotropy in the cell-wall domain by formulating optimization problems constrained by the three-dimensional model. Theoretical predictions from both models will be validated by experiments tracking the cell wall morphology, signals of protein complexes involved in exocytosis, and new polymers in the cell wall. The investigator will create an open-source interactive teaching and learning platform for outreach to K-12 educators and students based on the thin-shell model and its simulation. This project is jointly funded by the Mathematical Biology program of the Division of Mathematical Science and by the Biomechanics and Mechanobiology (BMMB) program in the Division of Civil, Mechanical, and Manufacturing Innovation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各种植物和真菌依靠丝状生长来发育、繁殖或在环境胁迫下生存。例如,单细胞宽度的根毛的生长有效地增加了植物根系吸收水分和养分的表面积。尽管实验方法已经能够在一个多世纪的时间里跟踪细胞壁表面扩张的细胞壁形态和运动学,但细胞壁生长的调节需要进一步阐明。该项目将开发数学模型和计算方法来模拟由于新细胞壁材料的空间图案和与细胞内部的机械相互作用而引起的细胞壁膨胀。此外,将设计推理方法来预测细胞壁几何形状的壁材运输的空间模式,并量化细胞壁内的体积增长如何分布和重新排列,以在膨胀和机械约束下维持细胞壁几何形状。本研究开发的方法可应用于花粉管、根毛、真菌菌丝等丝状生长系统,对促进农业发展和改善公共卫生具有重要意义。作为研究的补充,研究者将吸引学生,包括K-12,本科生和研究生,参与研究指导,期刊俱乐部和新的互动学习平台“Filaform”,通过利用几何和其他数学与现代和新兴实验技术相结合,促进对这一生物过程的兴趣和跨学科理解。为了达到研究和教学目标,将开发两个不同尺度的互补数学模型。第一个模型将是一个薄壳模型,将细胞壁表面近似为一个不断增长的弹性边界,由细胞内部的膨胀压力膨胀。将开发三次样条溶液来模拟在胀压和胞吐分布的影响下表面生长的演变,胞吐是沿细胞壁内表面分布新细胞壁材料的过程。此外,一个与模型方程子集耦合的反问题将被制定,以推断给定稳态细胞形状的胞吐分布。第二个模型将胞吐分布作为输入,是一个三维模型,描述细胞壁厚度上的生长分布和方向性(各向异性)。将发展一种基于能量的材料点方法来模拟移动细胞壁域的动力学。研究者将通过制定三维模型约束下的优化问题来推断细胞壁区域的体积增长和各向异性的空间图。这两种模型的理论预测将通过跟踪细胞壁形态、参与胞外分泌的蛋白质复合物信号和细胞壁中的新聚合物的实验来验证。研究者将基于薄壳模型及其模拟,为K-12教育工作者和学生创建一个开源的互动教学平台。该项目由数学科学部的数学生物学项目和土木、机械和制造创新部的生物力学和机械生物学(BMMB)项目共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inferring relative surface elastic moduli in thin-wall models of single cells
  • DOI:
    10.1140/epjp/s13360-022-02907-0
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Deng,Yaqi;Wei,Chaozhen;Wu,Min
  • 通讯作者:
    Wu,Min
Inhibition of the Exocyst Complex with Endosidin 2 Reduces Polarized Growth in Physcomitrium patens.
  • DOI:
    10.17912/micropub.biology.000655
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bormann, Eric;Xu, Rholee;Nargi, Clare;Wu, Min;Vidali, Luis
  • 通讯作者:
    Vidali, Luis
AN EULERIAN NONLINEAR ELASTIC MODEL FOR COMPRESSIBLE AND FLUIDIC TISSUE WITH RADIALLY SYMMETRIC GROWTH
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Wu其他文献

Interdisciplinary relationship between sociology, politics and public administration: Perspective of theory and practice
社会学、政治学和公共行政之间的跨学科关系:理论与实践的视角
  • DOI:
    10.15406/sij.2019.03.00198
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bouasone Chanthamith;Min Wu;Shaheen Yusufzada;Md Rasel
  • 通讯作者:
    Md Rasel
Structure and transport propertis of CaCO3 melts under earth's mantle conditions
地幔条件下CaCO3熔体的结构和输运特性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xiangpo Du;Min Wu;John S. Tse;Yuanming Pan
  • 通讯作者:
    Yuanming Pan
A multi-objective optimisation algorithm for a drilling trajectory constrained to wellbore stability
井眼稳定性约束的钻井轨迹多目标优化算法
  • DOI:
    10.1080/00207721.2021.1941396
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Wendi Huang;Min Wu;Jie Hu;Luefeng Chen;Chengda Lu;Xin Chen;Weihua Cao
  • 通讯作者:
    Weihua Cao
ECG Reconstruction via PPG: A Pilot Study
通过 PPG 重建心电图:试点研究
A biologically inspired approach to tracking control of autonomous surfacevehicles (ASVs) in presence of unknown ocean currents
一种受生物学启发的方法,用于在存在未知洋流的情况下跟踪控制自主水面车辆(ASV)
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Changzhong Pan;Xuzhi Lai;Simon X. Yang;Min Wu
  • 通讯作者:
    Min Wu

Min Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Wu', 18)}}的其他基金

Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
  • 批准号:
    2321063
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Facilitating Supply Chain Trust via Micro-Surface Sensing and Vision-Enabled Authentication
合作研究:通过微表面传感和视觉认证促进供应链信任
  • 批准号:
    2227261
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SCH: Explainable Learning of Heart Actions from Pulse to Broaden Cardiovascular Healthcare Access
SCH:通过脉搏了解心脏活动的可解释性学习,以扩大心血管医疗保健的可及性
  • 批准号:
    2124291
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Understanding and Facilitating Remote Triage and Rehabilitation During Pandemics via Visual Based Patient Physiologic Sensing
合作研究:RAPID:通过基于视觉的患者生理感知理解和促进大流行期间的远程分诊和康复
  • 批准号:
    2030502
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Simulating Large-Scale Morphogenesis in Planar Tissues
模拟平面组织中的大规模形态发生
  • 批准号:
    2012330
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
I-Corps Team Proposal "Mini Signal"
I军团团队提案“迷你信号”
  • 批准号:
    1848835
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Exploring Power Network Attributes for Information Forensics
探索信息取证的电力网络属性
  • 批准号:
    1309623
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Forensic Hash for Assured Cyber-based Sensing and Communications
确保基于网络的传感和通信的法医哈希
  • 批准号:
    1029703
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Addressing Physical-Layer Challenges via CLAWS: Cross-Layer Approaches to Wireless Secure Communications
通过 CLAWS 解决物理层挑战:无线安全通信的跨层方法
  • 批准号:
    0824081
  • 财政年份:
    2008
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Signal Processing Approaches for Multimedia Security and Information Protection
职业:多媒体安全和信息保护的信号处理方法
  • 批准号:
    0133704
  • 财政年份:
    2002
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: LungEx for Probing Multiscale Mechanobiology of Pulmonary Respiration-Circulation Coupling in Real-Time
职业:LungEx 用于实时探索肺呼吸-循环耦合的多尺度力学生物学
  • 批准号:
    2239162
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Probing the Ocean's Multiscale Pathways
探索海洋的多尺度路径
  • 批准号:
    2123496
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Probing Multiscale Complex Multiphase Flows with Positrons for Engineering and Biomedical Applications
用正电子探测多尺度复杂多相流,用于工程和生物医学应用
  • 批准号:
    EP/R045046/1
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Probing the Structure/Function/Dynamics Relationship in Biomolecular Complexes with Multiscale Computational Techniques
用多尺度计算技术探讨生物分子复合物的结构/功能/动力学关系
  • 批准号:
    10205822
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
Probing the Structure/Function/Dynamics Relationship in Biomolecular Complexes With Multiscale Computational Techniques
利用多尺度计算技术探讨生物分子复合物的结构/功能/动力学关系
  • 批准号:
    9334263
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
Probing the Structure/Function/Dynamics Relationship in Biomolecular Complexes with Multiscale Computational Techniques
用多尺度计算技术探讨生物分子复合物的结构/功能/动力学关系
  • 批准号:
    10456728
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
Probing the Structure/Function/Dynamics Relationship in Biomolecular Complexes with Multiscale Computational Techniques
用多尺度计算技术探讨生物分子复合物的结构/功能/动力学关系
  • 批准号:
    10693893
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
Probing the Structure/Function/Dynamics Relationship in Biomolecular Complexes With Multiscale Computational Techniques
利用多尺度计算技术探讨生物分子复合物的结构/功能/动力学关系
  • 批准号:
    9142551
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
Probing the Structure/Function/Dynamics Relationship in Biomolecular Complexes With Multiscale Computational Techniques
利用多尺度计算技术探讨生物分子复合物的结构/功能/动力学关系
  • 批准号:
    10018044
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
Probing networks underlying sleep and stress with multiscale data
利用多尺度数据探索睡眠和压力背后的网络
  • 批准号:
    9045424
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了