SCH: Explainable Learning of Heart Actions from Pulse to Broaden Cardiovascular Healthcare Access

SCH:通过脉搏了解心脏活动的可解释性学习,以扩大心血管医疗保健的可及性

基本信息

  • 批准号:
    2124291
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Cardiovascular disease is the most prevalent cause of death.  Early treatment can effectively reduce the risk of sudden cardiac death, but a many cardiac issues show no obvious symptoms in the early stage and would benefit from long-term continuous cardiac monitoring to capture the intermittent and asymptomatic abnormalities of the heart. This disproportionately affects low-income and disadvantaged populations, who have limited access to affordable preventive care.  An electrocardiogram (ECG) is a non-invasive gold standard for diagnosing cardiovascular diseases. Although it is currently possible to obtain an instant ECG test through a special smartwatch or special attachment to a smartphone, these current options require continuous user participation and are impractical to meet the needs of long-term continuous monitoring. This project investigates a new Artificial Intelligence (AI) powered health solution to automated and continuous cardiac monitoring by inferring ECG from the readily available continuous measurements, such as those sharing the same principles as in many wearable devices.  The research from this project will provide insights on how to transfer the ECG-based rich knowledge base to the diagnosis of cardiovascular diseases from wearable sensors. In order to broaden participation and impact, the project will integrate research and educational activities.  These include supporting the workforce development in such in-demand technical areas as machine learning and smart health, and actively engaging students in hands-on and exploratory interdisciplinary research, especially those from the under-represented groups.  The project will contribute to promoting national health, welfare, and prosperity.The key research issues of inferring ECG from photoplethysmogram (PPG), which can be monitored continuously without constant user attention, include: (1) how to apply biomedical insights to model the relations between ECG and PPG;  (2) how to carry out explainable learning for inferring ECG from PPG;  (3) how to make a transformative expansion of public health knowledge based on the newly developed bridge between ECG and PPG; and (4) how to address a variety of diverse and practical conditions, including population diversity, disease progression, and noise/distortions in real-world PPG sensing sources.  The investigator team plans to carry out the core inference from PPG to ECG in several stages, starting with modeling the biophysical relation between ECG and PPG and representing both waveform families through the well-understood basis in the Fourier family as a proof-of-concept.  The team plans to utilize data next to refine the representation using dictionary learning, and incorporate a deep model when extensive data can be leveraged to provide a refined inference.  The bridge between ECG and PPG enabled by explainable AI can bring unprecedented opportunities to expand smart health knowledge to benefit public health.  The investigator team will work closely with a medical expert to explore AI-enabled understanding and promotion of cardiovascular health in exercise physiology, and transferring rich ECG medical knowledge base to the more user-friendly PPG domain.  The team plans to embrace the opportunity of cross-disciplinary collaboration to evaluate the new capabilities in practical settings as well as promote participation and feedback from a diverse population.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心血管疾病是最常见的死亡原因,早期治疗可以有效降低心源性猝死的风险,但许多心脏问题在早期没有明显症状,需要长期连续心脏监测,以捕捉心脏的间歇性和无症状异常。这对低收入和弱势群体的影响尤为严重,他们获得负担得起的预防保健的机会有限。心电图(ECG)是诊断心血管疾病的无创黄金标准。虽然目前可以通过特殊的智能手表或智能手机的特殊附件获得即时ECG测试,但这些当前选项需要用户持续参与,无法满足长期连续监测的需求。该项目研究了一种新的人工智能(AI)驱动的健康解决方案,通过从现成的连续测量(例如与许多可穿戴设备具有相同原理的测量)中推断ECG,实现自动化和连续的心脏监测。该项目的研究将为如何将基于ECG的丰富知识库转移到可穿戴传感器的心血管疾病诊断提供见解。为了扩大参与度和影响力,该项目将整合研究和教育活动。其中包括支持机器学习和智能健康等需求技术领域的劳动力发展,并积极吸引学生参与实践和探索性跨学科研究,特别是来自代表性不足的群体的学生。该项目将有助于促进国民健康,福利,从光电容积描记图(PPG)中推断ECG的关键研究问题包括:(1)如何应用生物医学观点来建模ECG和PPG之间的关系:(2)如何进行可解释学习以从PPG中推断ECG;(3)如何在ECG和PPG之间的新开发桥梁的基础上进行公共卫生知识的变革性扩展;以及(4)如何解决各种不同的实际情况,包括人口多样性,疾病进展,以及真实世界PPG传感源中的噪声/失真。研究者团队计划分几个阶段进行从PPG到ECG的核心推断,从ECG和PPG之间的生物物理关系建模开始,并通过井表示两个波形族,作为概念验证,该团队计划接下来利用数据来使用字典学习来改进表示,当可以利用大量数据提供精细推理时,结合深度模型。可解释的人工智能实现的ECG和PPG之间的桥梁可以带来前所未有的机遇拓展智能健康知识,造福公众健康。研究团队将与医学专家密切合作,探索人工智能在运动生理学中对心血管健康的理解和促进,并将丰富的ECG医学知识库转移到更人性化的PPG领域。该团队计划抓住交叉的机会,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-Domain Joint Dictionary Learning for ECG Inference From PPG
  • DOI:
    10.1109/jiot.2022.3231862
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Xin Tian;Qiang Zhu;Yuenan Li;Min Wu
  • 通讯作者:
    Xin Tian;Qiang Zhu;Yuenan Li;Min Wu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Wu其他文献

Interdisciplinary relationship between sociology, politics and public administration: Perspective of theory and practice
社会学、政治学和公共行政之间的跨学科关系:理论与实践的视角
  • DOI:
    10.15406/sij.2019.03.00198
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bouasone Chanthamith;Min Wu;Shaheen Yusufzada;Md Rasel
  • 通讯作者:
    Md Rasel
Structure and transport propertis of CaCO3 melts under earth's mantle conditions
地幔条件下CaCO3熔体的结构和输运特性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xiangpo Du;Min Wu;John S. Tse;Yuanming Pan
  • 通讯作者:
    Yuanming Pan
A multi-objective optimisation algorithm for a drilling trajectory constrained to wellbore stability
井眼稳定性约束的钻井轨迹多目标优化算法
  • DOI:
    10.1080/00207721.2021.1941396
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Wendi Huang;Min Wu;Jie Hu;Luefeng Chen;Chengda Lu;Xin Chen;Weihua Cao
  • 通讯作者:
    Weihua Cao
ECG Reconstruction via PPG: A Pilot Study
通过 PPG 重建心电图:试点研究
A biologically inspired approach to tracking control of autonomous surfacevehicles (ASVs) in presence of unknown ocean currents
一种受生物学启发的方法,用于在存在未知洋流的情况下跟踪控制自主水面车辆(ASV)
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Changzhong Pan;Xuzhi Lai;Simon X. Yang;Min Wu
  • 通讯作者:
    Min Wu

Min Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Wu', 18)}}的其他基金

Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
  • 批准号:
    2321063
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Probing Multiscale Growth Dynamics in Filamentous Cell Walls
职业:探索丝状细胞壁的多尺度生长动力学
  • 批准号:
    2144372
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: Facilitating Supply Chain Trust via Micro-Surface Sensing and Vision-Enabled Authentication
合作研究:通过微表面传感和视觉认证促进供应链信任
  • 批准号:
    2227261
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Understanding and Facilitating Remote Triage and Rehabilitation During Pandemics via Visual Based Patient Physiologic Sensing
合作研究:RAPID:通过基于视觉的患者生理感知理解和促进大流行期间的远程分诊和康复
  • 批准号:
    2030502
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Simulating Large-Scale Morphogenesis in Planar Tissues
模拟平面组织中的大规模形态发生
  • 批准号:
    2012330
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
I-Corps Team Proposal "Mini Signal"
I军团团队提案“迷你信号”
  • 批准号:
    1848835
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Exploring Power Network Attributes for Information Forensics
探索信息取证的电力网络属性
  • 批准号:
    1309623
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Forensic Hash for Assured Cyber-based Sensing and Communications
确保基于网络的传感和通信的法医哈希
  • 批准号:
    1029703
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Addressing Physical-Layer Challenges via CLAWS: Cross-Layer Approaches to Wireless Secure Communications
通过 CLAWS 解决物理层挑战:无线安全通信的跨层方法
  • 批准号:
    0824081
  • 财政年份:
    2008
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Signal Processing Approaches for Multimedia Security and Information Protection
职业:多媒体安全和信息保护的信号处理方法
  • 批准号:
    0133704
  • 财政年份:
    2002
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似海外基金

Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Linkage Projects
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Research Grant
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
  • 批准号:
    EP/Z000653/1
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Research Grant
Explainable Population Estimation Using Deep Learning from Satellite Imagery
使用卫星图像深度学习进行可解释的人口估计
  • 批准号:
    2890100
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Studentship
An Explainable Machine Learning Platform for Single Cell Data Analysis
用于单细胞数据分析的可解释机器学习平台
  • 批准号:
    2313865
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243776
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243775
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了