CAREER: Scalable Integrated Nanophotonics with Subwavelength Gratings

职业:具有亚波长光栅的可扩展集成纳米光子学

基本信息

  • 批准号:
    2144568
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-15 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Photonic integrated circuits (PICs), the counterpart of traditional electronic integrated circuits that use photons instead of electrons for computing or signal processing, have innovated a wide range of optical applications, including quantum processing, biochemical sensing, and light detection and ranging (LiDAR). As electronic integrated circuits have been advanced by increasing the chip integration density, dense-PIC is extremely important. It adds more building blocks for more functionalities, improves modular power efficiency, and decreases unit costs. However, unlike electronics, increasing the photonic chip density is extremely difficult due to the wave nature of light. When two photonic components are close together, large optical crosstalk emerges, introducing noise in the system. This project will explore various subwavelength grating (SWG) metamaterials to push the boundaries of photonic integration density. SWGs have engineering capabilities for index contrast and anisotropic nature, and various next-generation SWG schemes will be investigated for reducing optical crosstalk. Diverse SWG photonic components, including in-plane metalens, will also be developed, and they will be integrated together to hybridize photonic and microfluidic systems. This project will also develop a rich hands-on laboratory course on Integrated Nanophotonics, allowing the students to develop their own photonic chips. Students will explore their ideas of using SWGs for advancing photonic components, integrating research and educational goals of this project. The outcomes of this project will be disseminated to local K-12 students and parents, stimulating the local community’s interest in photonics and nanotechnology. This project proposes to push the limits of scaling issues in integrated nanophotonics, i.e., chip integration density and extreme modal conversion, by exploring the fundamentals of subwavelength gratings (SWGs) and innovating PIC components and chip architecture. The SWGs form effectively anisotropic metamaterials, and their anisotropic properties will be engineered via next-generation SWGs with different directions, angles, and filling fractions. Fundamentals of these SWGs will help increase the overall chip density and advance various PIC components. Different types of in-plane SWG metalenses will also be developed, manipulating the amplitude and phase of the generated beams and achieving diverse beam conversions at sub-mm scale. Such an in-plane metalens system will be co-integrated with a microfluidic chip, realizing a highly stable and efficient on-chip optofluidic system targeting species at hundreds of micron-scale. The proposed research will be integrated with educational and outreach activities via the newly developed hands-on experimental course on Integrated Nanophotonics, helping students in West Texas and increasing the community’s interest in science and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。光子集成电路(PICs)是传统电子集成电路的对应产品,它使用光子代替电子进行计算或信号处理,已经创新了广泛的光学应用,包括量子处理、生化传感、光探测和测距(LiDAR)。随着电子集成电路的发展,芯片的集成密度不断提高,高密度pic变得尤为重要。它为更多功能添加了更多的构建块,提高了模块化电源效率,并降低了单位成本。然而,与电子学不同,由于光的波动性质,增加光子芯片密度是极其困难的。当两个光子分量靠得很近时,会产生较大的光串扰,在系统中引入噪声。本项目将探索各种亚波长光栅(SWG)超材料,以推动光子集成密度的边界。SWG具有指数对比度和各向异性的工程能力,并且将研究各种下一代SWG方案以减少光串扰。包括面内超透镜在内的各种SWG光子元件也将被开发出来,它们将被集成在一起,以实现光子和微流体系统的杂交。本计划亦会发展丰富的集成奈米光子学实操实验课程,让学生开发自己的光子晶片。学生将探索他们的想法,使用swg来推进光子元件,将研究和教育目标结合在一起。这项计划的成果将会传播给本地的K-12学生和家长,以激发本地社区对光子学和纳米技术的兴趣。该项目提出通过探索亚波长光栅(SWGs)的基础知识和创新PIC组件和芯片架构,推动集成纳米光子学中缩放问题的极限,即芯片集成密度和极端模态转换。swg形成了有效的各向异性超材料,其各向异性特性将通过具有不同方向、角度和填充分数的下一代swg来设计。这些swg的基本原理将有助于提高整体芯片密度和推进各种PIC组件。不同类型的平面内SWG超透镜也将被开发出来,控制所产生光束的振幅和相位,并在亚毫米尺度上实现不同的光束转换。该平面内超构透镜系统将与微流控芯片协同集成,实现高度稳定、高效的片上光流控系统,瞄准数百微米尺度的物种。拟议的研究将通过新开发的集成纳米光子学实践实验课程与教育和推广活动相结合,帮助西德克萨斯州的学生并增加社区对科学和技术的兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ayrton Bernussi其他文献

Ayrton Bernussi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ayrton Bernussi', 18)}}的其他基金

High-Density Photonic Chip Integration with Extreme Skin-Depth Waveguides
高密度光子芯片与极端趋肤深度波导的集成
  • 批准号:
    1930784
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

NSF-IITP: AI/ML-Enabled Scalable and Privacy-Preserving 6G Space-Air-Ground Integrated Network Operation
NSF-IITP:支持 AI/ML 的可扩展且保护隐私的 6G 天地一体化网络运营
  • 批准号:
    2242412
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Scalable Integrated Multi-Vector Energy Systems (SIM-VES)
可扩展集成多矢量能量系统(SIM-VES)
  • 批准号:
    10065763
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks
用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架
  • 批准号:
    2233887
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Development of an integrated and scalable platform process for the robust manufacture of allogeneic iPSC immunotherapies
开发集成且可扩展的平台流程,用于稳健生产同种异体 iPSC 免疫疗法
  • 批准号:
    10026664
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Building Scalable and Integrated Pathways to Industry 4.0 for Regional SMEs
为区域中小企业构建可扩展和集成的工业 4.0 路径
  • 批准号:
    CCMOB-2021-00065
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    CCI Mobilize Grants
UpScale: Scalable quantum information enabled by integrated optics
UpScale:通过集成光学实现可扩展的量子信息
  • 批准号:
    10006239
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
21EBTA. Bioengineering iLUNGs - Building scalable, integrated, multicellular and personalised human in vitro LUNGs
21 EBTA。
  • 批准号:
    BB/W014564/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
SCience-INtegrated Predictive modeLing (SCINPL): a novel framework for scalable and interpretable predictive scientific modeling
科学集成预测建模(SCINPL):用于可扩展和可解释的预测科学建模的新颖框架
  • 批准号:
    2210729
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Conference: Enabling the Implementation of Integrated and Scalable Smart Cities
会议:实现集成且可扩展的智慧城市
  • 批准号:
    2234676
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Urban Sensing of Pedestrians through Integrated, Cost-Effective, and Scalable Audio Sensor Networks
EAGER:通过集成、经济高效且可扩展的音频传感器网络实现城市行人感知
  • 批准号:
    2203408
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了