Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching

协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图

基本信息

  • 批准号:
    2203412
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The recent wave of technological advances in machine learning and artificial intelligence has led to widespread applications and public awareness. At the same time, the rapid growth of high-speed wireless network services presents an opportunity for future distributed learning involving a vast number of smart IoT devices. This project targets several technical challenges posed by the limited reliability of wireless connections and computational constraints of the edge nodes in distributed learning systems. Overcoming these challenges is vital to the plethora of computation, communication, and coordination tasks required by distributed machine learning at the network edge. Centered on developing innovative edge learning algorithms over wireless MAC channels under the constraints of computing, power, and bandwidth, this project can significantly impact wireless edge learning in a variety of IoT applications, ranging from transportation, safety, and agriculture, to energy efficiency, e-health, and smart infrastructure. The broader impact of this research will also come through many educational opportunities by providing opportunities in STEM to K-12, women, and underrepresented minority students. This collaborative project will develop an innovative network architecture for distributed learning over wireless multi-access channels. Specifically, the PIs will take a principled approach to develop an integrated wireless edge learning framework, using both gradient-based methods and also very recent advances in gradient-free, zero-order optimization, while taking into account the constraints in computing, power and bandwidth therein, in a holistic manner. The developed methods will be also extended to the setting of distributed online learning and reinforcement learning under wireless MAC. The PIs will focus on optimizing communication-efficient gradient sparsification based local updates that are communicated within the wireless network under bandwidth constraints; and each sender intelligently carries out transmission power allocation based on learning gradient and channel conditions. One important objective is to develop a novel learning-based framework for efficient wireless channel estimation and update to enable effective power control and learning. The project will devise edge learning algorithms that are robust against wireless channel uncertainty. The team of PIs shall comprehensively investigate the impact of the wireless bandwidth and power constraint on both the accuracy and convergence speed of edge learning algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近机器学习和人工智能的技术进步浪潮带来了广泛的应用和公众意识。与此同时,高速无线网络服务的快速增长为涉及大量智能物联网设备的未来分布式学习提供了机会。该项目针对分布式学习系统中无线连接的可靠性有限和边缘节点的计算限制所带来的几个技术挑战。克服这些挑战对于网络边缘的分布式机器学习所需的大量计算、通信和协调任务至关重要。该项目致力于在计算、功耗和带宽的限制下通过无线MAC信道开发创新的边缘学习算法,可以显著影响各种物联网应用中的无线边缘学习,从交通、安全和农业到能源效率、电子健康和智能基础设施。这项研究的更广泛影响也将通过为K-12,妇女和代表性不足的少数民族学生提供STEM机会来获得许多教育机会。 这个合作项目将开发一个创新的网络架构,用于通过无线多路访问信道进行分布式学习。具体而言,PI将采取原则性的方法来开发集成的无线边缘学习框架,使用基于梯度的方法以及无梯度、零阶优化的最新进展,同时以整体方式考虑其中的计算、功率和带宽限制。所开发的方法也将扩展到无线MAC下的分布式在线学习和强化学习的设置。PI将专注于优化在带宽约束下在无线网络内传送的基于通信高效梯度稀疏化的本地更新;并且每个发送器基于学习梯度和信道条件智能地执行传输功率分配。一个重要的目标是开发一种新的基于学习的框架,用于有效的无线信道估计和更新,以实现有效的功率控制和学习。该项目将设计边缘学习算法,对无线信道的不确定性具有鲁棒性。PI团队将全面调查无线带宽和功率限制对边缘学习算法的准确性和收敛速度的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MetaGater: Fast Learning of Conditional Channel Gated Networks via Federated Meta-Learning
Communication-Efficient Distributed Learning: An Overview
  • DOI:
    10.1109/jsac.2023.3242710
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    16.4
  • 作者:
    Xuanyu Cao;T. Başar;S. Diggavi;Y. Eldar;K. Letaief;H. Poor;Junshan Zhang
  • 通讯作者:
    Xuanyu Cao;T. Başar;S. Diggavi;Y. Eldar;K. Letaief;H. Poor;Junshan Zhang
Impact of Social Learning on Privacy-Preserving Data Collection
Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error Feedback
  • DOI:
    10.48550/arxiv.2306.11918
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Wang;Sen Lin;Junshan Zhang
  • 通讯作者:
    Hang Wang;Sen Lin;Junshan Zhang
FedHome: Cloud-Edge Based Personalized Federated Learning for In-Home Health Monitoring
  • DOI:
    10.1109/tmc.2020.3045266
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Qiong Wu;Xu Chen;Zhi Zhou;Junshan Zhang
  • 通讯作者:
    Qiong Wu;Xu Chen;Zhi Zhou;Junshan Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junshan Zhang其他文献

Networked Information Gathering in Stochastic Sensor Networks: Compressive Sensing, Adaptive Network Coding and Robustness
  • DOI:
    10.21236/ada590144
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junshan Zhang
  • 通讯作者:
    Junshan Zhang
CL-LSG: Continual Learning via Learnable Sparse Growth
CL-LSG:通过可学习的稀疏增长持续学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Yang;Sen Lin;Junshan Zhang;Deliang Fan
  • 通讯作者:
    Deliang Fan
A two-phase utility maximization framework for wireless medium access control
无线媒体访问控制的两阶段效用最大化框架
Critical behavior of blind spots in sensor networks.
传感器网络盲点的关键行为。
  • DOI:
    10.1063/1.2745232
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang Huang;Y. Lai;Kwangho Park;Junshan Zhang;Zhifeng Hu
  • 通讯作者:
    Zhifeng Hu

Junshan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junshan Zhang', 18)}}的其他基金

CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2203238
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2130125
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    2202126
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2203239
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2121222
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    1739344
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
TWC SBE: Small: Towards an Economic Foundation of Privacy-Preserving Data Analytics: Incentive Mechanisms and Fundamental Limits
TWC SBE:小型:迈向隐私保护数据分析的经济基础:激励机制和基本限制
  • 批准号:
    1618768
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EARS: Joint Optimization of RF Design and Smartphone Sensing: From Adaptive Sniffing to WAZE-Inspired Spectrum Sharing
EARS:射频设计和智能手机传感的联合优化:从自适应嗅探到受 WAZE 启发的频谱共享
  • 批准号:
    1547294
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
An Exchange Market Approach for Mobile Crowdsensing
移动群智感知的交易市场方法
  • 批准号:
    1408409
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002821
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002874
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2002902
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
  • 批准号:
    2003098
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003111
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2003131
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
  • 批准号:
    2003279
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
  • 批准号:
    2003082
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
  • 批准号:
    2002664
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了