CAREER: Mapping and enhancing the acquisition of conceptual knowledge using behavior, neural signals, and natural language processing models
职业:使用行为、神经信号和自然语言处理模型来映射和增强概念知识的获取
基本信息
- 批准号:2145172
- 负责人:
- 金额:$ 88.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The project is also funded from the EHR Core Research (ECR) program with co-funding from the Human Networks and Data Science (HNDS) program in SBE.The goal of this CAREER project at Dartmouth University is to advance our understanding of how students learn STEM concepts through online course videos in order to improve online education. Continued expansion of the internet backbone and improvements in computing hardware have facilitated improvements in video streaming, enabling videos to be more easily downloaded and shared. This, in turn, raises a number of questions of pressing national concern. For example, what makes for an effective course or training program? Which aspects of teaching might be optimized or automated? How and why do learning needs and goals vary across people? How might we lower barriers to achieving a high quality education? The focus of this project is to understand how to provide learners with automatized instruction that is customized to the needs of each individual. It could have a significant impact on the online learning of STEM concepts and how it can be individualized for members of different communities. Moreover, the investigator’s own teaching and mentoring will bring machine learning, cognitive neuroscience, and instructional design together in a way that will provide development opportunities for the next generation of scientists working on frameworks for characterizing and evaluating real-world teaching and learning. He will create summer workshops, a regular tutorial series, and a series of open online courses. The project aims to (1) to build a computational framework for tracking individual students’ conceptual learning and understanding; and (2) to test whether and how brain recordings can be used to estimate ongoing conceptual learning and understanding. The project will collect data of what students learn from real online instructional videos to inform, fit, and test models of real-world conceptual learning in such STEM domains as Astronomy and Computer Science programming. Conceptual knowledge is tested by asking participants to solve applied problems that require them to generalize beyond the specific examples presented during training. Applying text embedding-based models run on these data, the investigators will derive semantic maps both of the concepts taught and of what the students learn. The project will also involve collecting a large dataset from participants who engage with a sequence of course videos while undergoing neuroimaging. The experimental data will be used to construct dynamic estimates of each participant’s moment-by-moment conceptual knowledge and their ability to acquire new knowledge. The project will use natural language processing models to quantify concepts and how they relate. This work will provide a foundation for later research and development of automatic adaptive learning systems that can assess individual conceptual knowledge and edit online instructional material so that it is tailored to that individual.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。该项目还由EHR核心研究(ECR)计划提供资金,并由SBE的人类网络和数据科学(HNDS)计划共同资助。达特茅斯大学这个职业项目的目标是促进我们对学生如何通过在线课程视频学习STEM概念的理解,以改进在线教育。互联网主干的不断扩大和计算硬件的改进促进了视频流的改进,使视频能够更容易地下载和共享。这进而引发了一些国家迫切关注的问题。例如,什么是有效的课程或培训计划?教学的哪些方面可以优化或自动化?人与人之间的学习需求和目标有何不同?我们如何才能降低实现高质量教育的门槛?本项目的重点是了解如何为学习者提供根据每个人的需求定制的自动化教学。它可能会对STEM概念的在线学习以及如何针对不同社区的成员进行个性化学习产生重大影响。此外,研究人员自己的教学和指导将把机器学习、认知神经科学和教学设计结合在一起,为致力于描述和评估真实世界教学和学习的框架的下一代科学家提供发展机会。他将创建暑期工作坊、定期系列教程和一系列开放的在线课程。该项目旨在(1)建立一个跟踪学生个体概念学习和理解的计算框架;以及(2)测试大脑记录是否以及如何可以用来估计正在进行的概念学习和理解。该项目将收集学生从真实的在线教学视频中学到的数据,以告知、匹配和测试STEM领域(如天文学和计算机科学编程)的真实世界概念学习模型。通过让参与者解决应用问题来测试概念知识,这些问题要求他们在培训期间提供的具体例子之外进行概括。应用基于文本嵌入的模型在这些数据上运行,研究人员将得出教给学生的概念和学生所学的语义地图。该项目还将从参与者那里收集大型数据集,这些参与者在接受神经成像的同时观看一系列课程视频。实验数据将被用来构建每个参与者每一时刻的概念知识及其获取新知识的能力的动态估计。该项目将使用自然语言处理模型来量化概念及其相互关系。这项工作将为以后研究和开发自动适应学习系统奠定基础,该系统可以评估个人概念知识并编辑在线教学材料,以便为该INDIVIDUAL量身定做。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Text embedding models reveal high-resolution insights into conceptual knowledge from short multiple-choice quizzes
文本嵌入模型通过简短的多项选择测验揭示了对概念知识的高分辨率见解
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fitzpatrick, P. C.;Heusser, A. C.;Manning, J. R.
- 通讯作者:Manning, J. R.
Davos: A Python package “smuggler” for constructing lightweight reproducible notebooks
Davos:一个 Python 包“走私者”,用于构建轻量级可复制笔记本
- DOI:10.1016/j.softx.2023.101614
- 发表时间:2024
- 期刊:
- 影响因子:3.4
- 作者:Fitzpatrick, Paxton C.;Manning, Jeremy R.
- 通讯作者:Manning, Jeremy R.
Feature and order manipulations in a free recall task affect memory for current and future lists
自由回忆任务中的特征和顺序操作会影响当前和未来列表的记忆
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Manning, J. R.;Whitaker, E. C.;Fitzpatrick, P. C.;Lee, M. R.;Frantz, A. M.;Bollinger, B. J.;Romanova, D.;Field, C. E.;Heusser A. C.
- 通讯作者:Heusser A. C.
The psychological arrow of time drives temporal asymmetries in inferring unobserved past and future events
心理时间箭头在推断未观察到的过去和未来事件时会导致时间不对称
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Manning J R
- 通讯作者:Manning J R
?????: a Python "smuggler" for constructing lightweight reproducible notebooks
??????:一个用于构建轻量级可复制笔记本的Python“走私者”
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fitzpatrick, Paxton C.;Manning, Jeremy R.
- 通讯作者:Manning, Jeremy R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Manning其他文献
Jeremy Manning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
湘东北万古金矿成矿过程研究:黄铁矿原位硫同位素及微量元素Mapping指示
- 批准号:2025JJ80016
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于T1 mapping技术的机器学习模型构建肥厚型心肌病心源性猝死风险预警平台
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI联合T1mapping组学构建II型糖尿病合并射血分数保留型心衰早诊模型及转归预警研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MR2T-mapping成像评估复方芙蓉叶凝胶膏治疗膝关节滑膜炎疗效研究
- 批准号:2024BJ015
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
MRI mapping技术评估乳腺癌新辅助治疗后残余可疑强化灶
的价值分析
- 批准号:2024JJ9297
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于LA-ICPMS Mapping技术的含普通铅矿物U-Pb定年方法研发
- 批准号:
- 批准年份:2022
- 资助金额:58 万元
- 项目类别:
基于MR高分辨率弥散峰度及T2Mapping成像的影像组学模型术前无创预测子宫内膜癌侵袭性的研究
- 批准号:2022J011425
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于DKI和Gd-EOB-DTPA增强T1-mapping评估化疗联合ALPPS术后肝脏再生能力的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于T1、T2 mapping和DWI定量成像技术在预测乳腺癌分子亚型临床价值初探
- 批准号:2022J011501
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
利用酵母重组近交系的QTL_mapping检验细胞衰老的错误成灾学说
- 批准号:32170635
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:@NASA: Enhancing Flood Detection and Mapping by Using PolSAR, Metaheuristic, and Deep Learning Algorithms
RII Track-4:@NASA:使用 PolSAR、元启发式和深度学习算法增强洪水检测和绘图
- 批准号:
2327253 - 财政年份:2024
- 资助金额:
$ 88.16万 - 项目类别:
Standard Grant
Mapping p53 dynamics to cell-fate outcomes in reprogramming and oncogenesis
将 p53 动态映射到重编程和肿瘤发生中的细胞命运结果
- 批准号:
10744532 - 财政年份:2023
- 资助金额:
$ 88.16万 - 项目类别:
SCC-CIVIC-PG Track B Community Resilience Catalyst: Co-Designing an Integrated Participatory Mapping System for Enhancing Disaster Resilience through Community Engagement
SCC-CIVIC-PG Track B 社区复原力催化剂:共同设计综合参与式绘图系统,通过社区参与增强抗灾能力
- 批准号:
2043494 - 财政年份:2021
- 资助金额:
$ 88.16万 - 项目类别:
Standard Grant
Enhancing forecasting flood inundation mapping through data assimilation
通过数据同化加强洪水预测
- 批准号:
2438362 - 财政年份:2020
- 资助金额:
$ 88.16万 - 项目类别:
Studentship
Enhancing sentinel lymph node mapping in lung cancer surgery using a novel liposome-based dual-modality nanoparticle
使用新型脂质体双模态纳米颗粒增强肺癌手术中的前哨淋巴结定位
- 批准号:
417021 - 财政年份:2019
- 资助金额:
$ 88.16万 - 项目类别:
Studentship Programs
Mapping Fields in Augmented Reality with Personal Mobile Devices: Enhancing Visualization Skills for Education and Industry
使用个人移动设备映射增强现实领域:增强教育和工业的可视化技能
- 批准号:
1822728 - 财政年份:2018
- 资助金额:
$ 88.16万 - 项目类别:
Standard Grant
NRI: Enhancing Mapping Capabilities of Underwater Caves using Robotic Assistive Technology
NRI:利用机器人辅助技术增强水下洞穴的测绘能力
- 批准号:
1637876 - 财政年份:2016
- 资助金额:
$ 88.16万 - 项目类别:
Standard Grant
Real-Time Articulation-to-Speech Mapping for Enhancing Impaired Oral Communication
实时发音到语音映射,以增强受损的口语交流
- 批准号:
8957652 - 财政年份:2015
- 资助金额:
$ 88.16万 - 项目类别:
Real-Time Articulation-to-Speech Mapping for Enhancing Impaired Oral Communication
实时发音到语音映射,以增强受损的口语交流
- 批准号:
9114061 - 财政年份:2015
- 资助金额:
$ 88.16万 - 项目类别:
Mapping and molecular analysis of rice Ur1 gene with effect of enhancing yield ability
水稻Ur1增产基因定位及分子分析
- 批准号:
18580007 - 财政年份:2006
- 资助金额:
$ 88.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)