Enhancing forecasting flood inundation mapping through data assimilation

通过数据同化加强洪水预测

基本信息

  • 批准号:
    2438362
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Timely flood inundation forecasts allow pro-active flood management, reducing loss of life and damage to infrastructure. This project aims to investigate new methods using observations of floods to verify and improve flood inundation forecasts. The state-of-the art in operational flood inundation forecasting at national/trans-national scales uses a simulation library, where rainfall data from numerical weather prediction (NWP) or observations drives a chain of process models and probabilistic analysis, and the final flood forecasts are produced from a pre-computed library of flood maps. This approach saves computation time, allowing near-real-time updating for large areas, which otherwise presents a significant challenge. However, it poses challenges for data assimilation, where observations are combined with model forecasts in a dynamical feedback loop, to keep forecasts on track. Nevertheless, the data assimilation framework still provides consistent techniques for comparison of heterogeneous observations with model data, forecast verification and calibration.The PhD project will address the following questions:1. What are the lengthscales of variability in flood inundation forecasts made using a simulation library approach? New generic methods are needed to understand the scales of ensemble variability, which may be determined by the driving NWP and hydrological models rather than the resolutions of the pre-computed flood hazard maps. This will be valuable for the qualitative interpretation of forecasts for users, as well as setting quantitative scale parameters for appropriate comparisons of observations with models. The approach will use the ideas of the meteorological Fractions Skill Score in a new context. 2. Can we use low resolution satellite data to give useful urban flood observations? Satellite-based Synthetic Aperture Radar (SAR) instruments measure backscatter, which in rural areas can be converted to flood extent using image processing. Recent work by the supervisors has identified flood extent in urban areas using expensive high resolution (2-3m) SAR data together with high resolution (2m) lidar digital surface models (DSMs) and modelled flood return period maps. Can these techniques be usefully extended to use lower resolution Sentinel 1 open data or for locations where high resolution lidar is not available? 3. Which observation operators are most appropriate? Different observation-model comparison approaches may provide better or worse discrimination between forecasts, depending on the lengthscales of forecast variability and the features that can be resolved by the observations. This lends itself to pixel-by-pixel flooded/not flooded binary comparisons or related probabilistic approaches, flooded area estimations and water level estimation by intersection of flood extents with a digital terrain model. 4. Is data assimilation cycling beneficial for a simulation library system? Implementing an ensemble Kalman filter or resampling particle filter may provide forecasts that are closer to the observed reality than the standard simulation library approach. The student will build a system using the observation operators developed in Year 2 and existing data assimilation software libraries (such as PDAF), and evaluate the impact on forecasts. The student is expected to develop generic methods and explore these questions through case studies for different locations (e.g., Myanmar, India, Bangladesh, Ireland, UK) using both ensemble and single deterministic forecast approaches, with data from satellites, gauges and river / road cameras. During the project, the student will have opportunities to gain further experience through work placements with JBA.
及时的洪水淹没预报有助于积极主动的洪水管理,减少生命损失和基础设施损坏。该项目旨在研究利用洪水观测来核实和改进洪水淹没预测的新方法。国家/跨国尺度的洪水淹没业务预报的最新技术使用模拟库,其中来自数值天气预报(NWP)或观测的降雨数据驱动一系列过程模型和概率分析,最终的洪水预报是从预先计算的洪水图库中产生的。这种方法节省了计算时间,允许对大面积区域进行近实时更新,否则会带来重大挑战。然而,它对数据同化提出了挑战,在数据同化中,观测结果与模型预报在动态反馈回路中相结合,以保持预报正确。尽管如此,数据同化框架仍然提供了一致的技术,异质观测与模式数据的比较,预报验证和校准。在使用模拟库方法进行洪水淹没预测时,变化的长度尺度是什么?需要新的通用方法来了解集合变率的尺度,这可能是由驱动数值预报和水文模型,而不是预先计算的洪水灾害地图的分辨率。这将有助于为用户对预报作出定性解释,并为观测与模型的适当比较确定定量尺度参数。该方法将在新的背景下使用气象分数技能分数的想法。2.我们能否利用低分辨率卫星数据提供有用的城市洪水观测?基于卫星的合成孔径雷达仪器测量后向散射,在农村地区,可以使用图像处理将其转换为洪水范围。监督人员最近的工作是利用昂贵的高分辨率(2- 3米)合成孔径雷达数据以及高分辨率(2米)激光雷达数字表面模型和模拟洪水重现期地图确定城市地区的洪水范围。这些技术是否可以有效地扩展到使用较低分辨率的Sentinel 1开放数据或高分辨率激光雷达不可用的位置?3.哪些观察算子最合适?不同的观测模式比较方法可以提供更好或更差的区别预测,这取决于预测变率的长度尺度和观测可以解决的功能。这有助于逐像素淹没/未淹没的二元比较或相关的概率方法,淹没面积估计和水位估计的洪水范围与数字地形模型的交集。4.资料同化循环对模拟库系统有益吗?实施集合卡尔曼滤波器或重置粒子滤波器可以提供比标准模拟库方法更接近观测到的现实的预测。学生将使用第二年开发的观测算子和现有的数据同化软件库(如PDAF)构建一个系统,并评估对预报的影响。学生需要开发通用方法,并通过不同地点的案例研究探索这些问题(例如,缅甸、印度、孟加拉国、爱尔兰、英国),使用集合和单一确定性预报方法,利用卫星、仪表和河流/道路摄像机提供的数据。在项目期间,学生将有机会通过与JBA的工作实习获得进一步的经验。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new skill score for ensemble flood maps: assessing spatial spread-skill with remote sensing observations
集合洪水图的新技能评分:利用遥感观测评估空间传播技能
  • DOI:
    10.5194/nhess-2022-188
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hooker H
  • 通讯作者:
    Hooker H
Assimilated Watercolours: Pop up art exhibitions in Care Homes
同化水彩画:在疗养院举办临时艺术展
  • DOI:
    10.5194/egusphere-egu22-11694
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dance S
  • 通讯作者:
    Dance S
Spatial scale evaluation of forecast flood inundation maps
  • DOI:
    10.1016/j.jhydrol.2022.128170
  • 发表时间:
    2022-07-21
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Hooker, Helen;Dance, Sarah L.;Shelton, Kay
  • 通讯作者:
    Shelton, Kay
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of an improved hourly ensemble streamflow forecasting system for flood forecasting on small watersheds
开发改进的每小时集合水流预报系统,用于小流域洪水预报
  • 批准号:
    560780-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Development of Hybrid Flood Forecasting System based on Rainfall Information from Machine Learning Algorithm
基于机器学习算法的降雨信息的混合洪水预报系统开发
  • 批准号:
    22K04332
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ice-jam flood forecasting
冰塞洪水预报
  • 批准号:
    RGPIN-2021-03570
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of high resolution global-flood forecasting system with long lead time
开发周期长的高分辨率全球洪水预报系统
  • 批准号:
    21K14386
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ice-jam flood forecasting
冰塞洪水预报
  • 批准号:
    RGPIN-2021-03570
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Flood forecasting on the mountainous river basin by using the most advanced Multi-parameter radars
利用最先进的多参数雷达进行山区流域洪水预报
  • 批准号:
    21J15249
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Integrated Forecasting System of Flood Inundation and Agricultural Damage in the Lower Mekong Basin
湄公河下游流域洪水淹没和农业损失综合预报系统
  • 批准号:
    21F21071
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了