A deep learning framework for high-definition prediction and interpretation of protein localization
用于蛋白质定位的高清预测和解释的深度学习框架
基本信息
- 批准号:2145226
- 负责人:
- 金额:$ 64.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Proteins are molecules that perform diverse functions in various cell compartments and subcellular organelles. Aberrant localization of proteins may lead to harmful effects on cells, including poorly functional traits in plants, or disease in humans and animals. Protein localization is a complicated biological process controlled by many factors. Thus, for most proteins, their localization mechanisms are not well understood. Moreover, experimental methods for measuring the degree of protein localization are time- and labor-consuming. Therefore, it is of great significance to develop protein localization analysis methods. Current computational methods are often lacking in accuracy to quantify protein localization at the suborganelle level. In addition, most methods lack capacities to predict the effects of mutations on protein localization, or reveal target signals and provide information important for elucidating the mechanism of this process. This project will help address this gap in methos by developing an interpretable deep-learning approach and related informatics infrastructure for protein localization studies. The outcome will not only improve the protein localization prediction accuracy and resolution, but also shed light on localization mechanisms. Furthermore, the deep-learning framework can be applied to several other bioinformatics problems, such as mRNA localization prediction, enzyme classification and active site prediction, and protein function prediction. The project will also provide training and research experience in machine learning and real-world software development for various students, especially underrepresented minorities. Virtual workshops and community-wide competitions will be hosted annually to provide machine learning training for students with different backgrounds.The project will develop a deep-learning framework that incorporates a sequence-based neural network and graph neural network for suborganellar protein localization prediction, together with applications of machine-learning attention mechanisms. The framework’s interpretability will enable studies of high-definition localization mechanisms, including potential novel targeting signal identification and prediction of mislocalization driven by mutation or regulatory alteration. In addition, the framework will be extended to study tissue-specific or cell-type-specific localization by incorporating single-cell data. An all-in-one web portal for protein localization prediction will be developed to provide a code-free environment for protein localization analysis. All the functionalities, and related data to be used and generated in this project will be provided on the platform. The web resource will also be an educational tool for AI learning and practices at various levels, such as high-school biology, together with many visualization and playground features. The prediction web services, as well as project progress and training materials will be provided at https://www.mu-loc.org/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质是在各种细胞区室和亚细胞器中执行不同功能的分子。蛋白质的异常定位可能导致对细胞的有害影响,包括植物的功能性特征差,或人类和动物的疾病。蛋白质定位是一个受多种因素控制的复杂生物学过程。因此,对于大多数蛋白质,它们的定位机制还不清楚。此外,用于测量蛋白质定位程度的实验方法是费时费力的。因此,研究蛋白质定位分析方法具有重要意义。目前的计算方法往往缺乏准确性,以量化蛋白质定位在亚细胞器水平。此外,大多数方法缺乏预测突变对蛋白质定位的影响的能力,或揭示靶信号并提供对阐明该过程的机制重要的信息。该项目将通过开发一种可解释的深度学习方法和相关的信息学基础设施来帮助解决方法中的这一差距。该结果不仅可以提高蛋白质定位预测的精度和分辨率,而且可以揭示蛋白质定位的机理。此外,深度学习框架还可以应用于其他几个生物信息学问题,例如mRNA定位预测、酶分类和活性位点预测以及蛋白质功能预测。该项目还将为各种学生,特别是代表性不足的少数民族提供机器学习和现实世界软件开发方面的培训和研究经验。该项目将开发一个深度学习框架,结合基于序列的神经网络和图神经网络用于亚细胞器蛋白定位预测,以及机器学习注意力机制的应用。该框架的可解释性将使高清晰度的定位机制的研究,包括潜在的新的靶向信号识别和预测的突变或监管改变驱动的错误定位。此外,该框架将被扩展到研究组织特异性或细胞类型特异性定位通过合并单细胞数据。开发一个用于蛋白质定位预测的一体化门户网站,为蛋白质定位分析提供无代码环境。该平台将提供本项目中使用和生成的所有功能和相关数据。该网络资源也将成为各级人工智能学习和实践的教育工具,例如高中生物学,以及许多可视化和操场功能。预测网络服务以及项目进展和培训材料将在www.example.com上提供https://www.mu-loc.org/.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Xu其他文献
Physiological and Metabonomic Alterations in Macrocystis pyrifera upon Exposure to Chromium
铬暴露后巨囊藻的生理和代谢变化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ying Xia Li;Dong Xu;Xiao Wen Zhang;Xiao Fan;Nai Hao Ye - 通讯作者:
Nai Hao Ye
Aspirin inhibits proliferation and augments gemcitabine-induced cytotoxicity in pancreatic cancer cells.
阿司匹林抑制胰腺癌细胞增殖并增强吉西他滨诱导的细胞毒性。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:8.2
- 作者:
Yanqiu Ou;Dong Xu;Guangmei Yan;Wenbo Zhu;Yan Li;Pengxin Qiu;Yijun Huang;Jun Xie;Songmin He;Xiaoke Zheng;Ti;ong Leng - 通讯作者:
ong Leng
Characterization of protein structure and function at genome scale with a computational prediction pipeline.
通过计算预测管道在基因组规模上表征蛋白质结构和功能。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Dong Xu;Dongsup Kim;P. Dam;M. Shah;E. Uberbacher;Ying Xu - 通讯作者:
Ying Xu
Risk and prognosis factors for systemic sclerosis with lung cancer: A single‐centre case‐control study in China
系统性硬化症合并肺癌的危险因素和预后因素:中国的单中心病例对照研究
- DOI:
10.1111/ijcp.13819 - 发表时间:
2020 - 期刊:
- 影响因子:2.6
- 作者:
Hui Zhong;Jiaxin Zhou;Shangzhu Zhang;Yan Xu;Y. Hou;Mengtao Li;Dong Xu;Mengzhao Wang;Xiaofeng Zeng - 通讯作者:
Xiaofeng Zeng
Hypersensitive detection of transcription factors by multiple amplification strategy based on molecular beacon
基于分子信标的多重扩增策略对转录因子的超灵敏检测
- DOI:
10.1016/j.microc.2021.106837 - 发表时间:
2021-12 - 期刊:
- 影响因子:4.8
- 作者:
Dong Xu;Xijie Xu;Zhenqiang Fan;Meifen Zou;Xiaofeng Qin;Yuedi Ding;Ying Peng;Kai Zhang - 通讯作者:
Kai Zhang
Dong Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 64.96万 - 项目类别:
Standard Grant
CRII: CNS: A Systematic Multi-Task Learning Framework for Improving Deep Learning Efficiency on Edge Platforms
CRII:CNS:用于提高边缘平台深度学习效率的系统多任务学习框架
- 批准号:
2245765 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
Standard Grant
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
Multi-modal insights of spatially distributed cells with associations of diseases and drug response
空间分布细胞与疾病和药物反应关联的多模式见解
- 批准号:
10714602 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10940417 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
CDS&E: A Deep Learning Framework for Evaluation of Electron Microscopy Images of Chemically-Complex Metallic Materials
CDS
- 批准号:
2311104 - 财政年份:2023
- 资助金额:
$ 64.96万 - 项目类别:
Continuing Grant