CAREER: Exceptional Points on Modular Curves

职业生涯:模曲线上的特殊点

基本信息

  • 批准号:
    2145270
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Elliptic curves are among the most ubiquitous objects in modern number theory. They have far-reaching applications, both in theoretical mathematics – such as in the proof of Fermat's Last Theorem – and in information security where they form the basis of a cryptosystem commonly used to provide secure web browsing. The research in this project focuses on elliptic curves with unexpected arithmetic properties revealed by viewing these curves as distinguished points on a geometric object called a modular curve. In this context, the project will develop new tools for identifying these unusual elliptic curves, exploiting both the geometry of the modular curve and associated algebraic structures. In addition, the project includes several educational components, such as a training program in which master's degree students will serve as project leaders for undergraduates enrolled in a research exploration course. A central aim of the project is to broaden participation in the mathematical sciences, both at the undergraduate and graduate level.The main goal of this research is to explain isolated or sporadic points on modular curves, especially in the case where such points correspond to elliptic curves with a point (or a rational cyclic isogeny) of high order defined over a number field of unusually low degree. This is motivated by a desire to control the existence of such points in infinite families of modular curves, which lies at the heart of open questions raised by Mazur and Serre. A combination of tools will be employed, including geometric approaches stemming from Arakelov intersection theory and explicit computational techniques relating to Galois representations of elliptic curves. For certain modular curves, the project pursues an analogy between isolated points corresponding to elliptic curves with complex multiplication and those whose existence fails to be explained by any known geometric or modular phenomenon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。椭圆曲线是现代数论中最普遍的对象之一。它们在理论数学(例如费马大定理的证明)和信息安全方面都有深远的应用,它们构成了通常用于提供安全Web浏览的密码系统的基础。该项目的研究重点是椭圆曲线,通过将这些曲线视为称为模曲线的几何对象上的区别点,揭示了意想不到的算术特性。在这种情况下,该项目将开发新的工具来识别这些不寻常的椭圆曲线,利用模曲线的几何形状和相关的代数结构。此外,该项目还包括几个教育部分,例如一个培训计划,其中硕士生将担任研究探索课程本科生的项目负责人。该项目的一个中心目标是扩大参与数学科学,无论是在本科生和研究生水平,这项研究的主要目标是解释孤立或零星的点上的模曲线,特别是在这种情况下,这些点对应于椭圆曲线的点(或有理循环等距)的高阶定义在一个数域的异常低的程度。这是出于一个愿望,以控制存在这样的点在无限家庭的模块化曲线,这是在心脏的开放问题所提出的马祖尔和塞尔。一个工具的组合,将采用,包括几何方法源于Arakelov相交理论和显式计算技术有关的伽罗瓦表示的椭圆曲线。对于特定的模数曲线,该项目追求的是与具有复数乘法的椭圆曲线相对应的孤立点与那些无法用任何已知的几何或模数现象解释的孤立点之间的类比。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abbey Bourdon其他文献

Torsion subgroups of CM elliptic curves over odd degree number fields
奇次数域上 CM 椭圆曲线的扭转子群
  • DOI:
    10.1093/imrn/rnw163
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbey Bourdon;P. Pollack
  • 通讯作者:
    P. Pollack
A Uniform Version of a Finiteness Conjecture for CM Elliptic Curves
CM椭圆曲线有限性猜想的一致版本
  • DOI:
    10.4310/mrl.2015.v22.n2.a4
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbey Bourdon
  • 通讯作者:
    Abbey Bourdon
A Uniform Version of a Finiteness Conjecture for Elliptic Curves with Complex Multiplication
复数乘法椭圆曲线有限性猜想的一致版本
  • DOI:
    10.14418/wes01.3.31
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbey Bourdon
  • 通讯作者:
    Abbey Bourdon
Towards a classification of isolated ?-invariants
孤立 ? 不变量的分类
  • DOI:
    10.1090/mcom/3956
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Abbey Bourdon;Sachi Hashimoto;Timo Keller;Z. Klagsbrun;David Lowry;Travis Morrison;Filip Najman;Himanshu Shukla
  • 通讯作者:
    Himanshu Shukla
Torsion Points on CM Elliptic Curves Over Real Number Fields
实数域上 CM 椭圆曲线上的扭点
  • DOI:
    10.1090/tran/6905
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbey Bourdon;P. L. Clark;James Stankewicz
  • 通讯作者:
    James Stankewicz

Abbey Bourdon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abbey Bourdon', 18)}}的其他基金

LEAPS-MPS: Isolated Points on Curves
LEAPS-MPS:曲线上的孤立点
  • 批准号:
    2137659
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
  • 批准号:
    11674247
  • 批准年份:
    2016
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
  • 批准号:
    2328407
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Novel photon blockade effects with exceptional points
新颖的光子封锁效果,亮点十足
  • 批准号:
    22KF0404
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Non-Hermitian physics of heavy-fermion superconductors at exceptional points
重费米子超导体在特殊点的非厄米物理
  • 批准号:
    22KJ0752
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Liouvillian analysis of dynamics at exceptional points incorporating quantum jumps
结合量子跃迁的特殊点动力学的刘维尔分析
  • 批准号:
    22K03473
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Engineering Exceptional Points for Sound Control with Non-Hermitian Acoustic Metasurfaces
合作研究:利用非厄米特声学超表面设计声音控制的特殊点
  • 批准号:
    1951221
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Exceptional Points for Sound Control with Non-Hermitian Acoustic Metasurfaces
合作研究:利用非厄米特声学超表面设计声音控制的特殊点
  • 批准号:
    1951106
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: Robust Exceptional Points and their Application in Harmonic Generation
RUI:鲁棒异常点及其在谐波产生中的应用
  • 批准号:
    2012172
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Mapping Exceptional Points in Quantum Systems
映射量子系统中的异常点
  • 批准号:
    539637-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Novel Photonic Structures Using Non-Hermitian Exceptional Points
职业:使用非厄米特例外点的新型光子结构
  • 批准号:
    2000538
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Theory and implementation of exceptional points of degeneracy for oscillators and array radiators based on spatial combiners
基于空间组合器的振荡器和阵列辐射器简并异常点的理论与实现
  • 批准号:
    1711975
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了