CAREER: Multiscale Mechanics of Mycelium for Lightweight, Strong, and Sustainable Composites

职业:用于轻质、坚固和可持续复合材料的菌丝体多尺度力学

基本信息

  • 批准号:
    2145392
  • 负责人:
  • 金额:
    $ 59.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will focus on revealing the fundamental principles that govern the multiscale mechanics of mycelium-based composites and integrate research into an educational program. Mycelium is massively produced during mushroom growth as the main body of fungi. It plays an essential role in altering soil chemistry and mechanics, enabling a suitable living environment for different plant species. Their growth naturally forms entanglement and bonds to integrate organic wastes, including hardwood residue, mill dust, and stalk, to produce strong and lightweight composites without adding synthetic glues or energy input. The multiscale structure of mycelium composites includes the chemistry of mycelium fiber, the mycelium-debris interface, and the complex mycelium network entangled with debris. These features synergistically determine the composite strength, elasticity, and toughness. This research project will develop computational modeling, culturing, and characterizations capabilities to understand the evolving mycelium structure in growth and the structure-mechanics relationship to yield better composites. This research will be complemented by establishing an inclusive, engaging, and inspiring educational program to the broad community, including curriculum development, giving a special exhibition on biomaterials, coordinating learn-by-play activities and seminars on computational simulations for bridge competition in a local museum, and involving K-12 in research through an institutional STEM education center. The specific goal of this project is to develop a fundamental multiscale model of mycelium-based composites, validate the model through in-lab culturing and mechanical/structural characterizations, and reveal the mechanism of making mycelium composite lightweight and strong. The research objectives of this project include (i) development of a multiscale modeling and simulations platform for the structure-mechanics relationship of mycelium-wood composite; (ii) development of Monte Carlo and generative adversarial network models to replicate and predict the growth of mycelium network; (iii) capability to use machine learning model for fast prediction of the composite mechanical properties and their scaling law with material density. In addition, the following fundamental questions will be addressed: (1) what are the roles of environmental factors and nutrition distribution in the structure and mechanics of a mycelium network; (2) what are the roles of processing parameters in the mechanics of mycelium composites. The overall focus will be on understanding the physics of mycelium composite and the potential of producing multifunctional composites from wastes. This project will allow the PI to advance the knowledge base in material science, multiscale modeling, and mechanics, and establish his long-term career in biomechanics and biomaterials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展(CAREER)补助金将专注于揭示管理菌丝基复合材料的多尺度力学的基本原则,并将研究整合到教育计划中。菌丝体作为真菌的主体在蘑菇生长过程中大量产生。它在改变土壤化学和力学方面起着至关重要的作用,为不同的植物物种创造了合适的生存环境。它们的生长自然地形成缠结和结合,以整合有机废物,包括硬木残留物,工厂粉尘和秸秆,从而生产出坚固而轻质的复合材料,而无需添加合成胶或能量输入。菌丝体复合物的多尺度结构包括菌丝体纤维的化学结构、菌丝体-碎片界面以及与碎片缠结的复杂菌丝体网络。这些特征协同决定了复合材料的强度、弹性和韧性。该研究项目将开发计算建模,培养和表征能力,以了解生长中不断变化的菌丝体结构和结构力学关系,以产生更好的复合材料。这项研究将通过建立一个包容性,吸引力和鼓舞人心的教育计划来补充广大社区,包括课程开发,举办生物材料特别展览,协调游戏学习活动和研讨会在当地博物馆进行桥梁比赛的计算模拟,并通过机构STEM教育中心参与K-12研究。该项目的具体目标是开发基于菌丝体的复合材料的基本多尺度模型,通过实验室培养和机械/结构表征来验证该模型,并揭示使菌丝体复合材料轻质和坚固的机制。本项目的研究目标包括:(i)开发菌丝-木材复合材料结构-力学关系的多尺度建模和仿真平台;(ii)开发MonteCarlo和生成对抗网络模型,以复制和预测菌丝网络的生长;(iii)能够使用机器学习模型快速预测复合材料的机械性能及其与材料密度的比例律。此外,以下基本问题将得到解决:(1)什么是环境因素和营养分布的菌丝体网络的结构和力学的作用;(2)什么是菌丝体复合材料的力学加工参数的作用。总体重点将是了解菌丝体复合材料的物理学和从废物中生产多功能复合材料的潜力。该项目将使PI能够推进材料科学、多尺度建模和力学方面的知识基础,并在生物力学和生物材料领域建立长期的职业生涯。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mycelium-based wood composites for light weight and high strength by experiment and machine learning
  • DOI:
    10.1016/j.xcrp.2023.101424
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Libin Yang;Zhao Qin
  • 通讯作者:
    Libin Yang;Zhao Qin
Effects of terminal tripeptide units on mechanical properties of collagen triple helices
  • DOI:
    10.1016/j.eml.2023.102075
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Masrouri,Milad;Qin,Zhao
  • 通讯作者:
    Qin,Zhao
Structure–mechanics relationship of hybrid polyvinyl alcohol-collagen composite by molecular dynamics simulations
  • DOI:
    10.1557/s43577-022-00416-0
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Ju-ying Zhou;Zhao Qin
  • 通讯作者:
    Ju-ying Zhou;Zhao Qin
Design and build a green tent environment for growing and charactering mycelium growth in lab
设计和建造一个绿色帐篷环境,用于实验室中菌丝体的生长和表征
  • DOI:
    10.1039/d3lc00336a
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yang, Libin;Xu, Ruohan;Joardar, Anushka;Amponsah, Michael;Sharifi, Nina;Dong, Bing;Qin, Zhao
  • 通讯作者:
    Qin, Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhao Qin其他文献

USEFULNESS OF GRAY-SCALE CONTRAST-ENHANCED ULTRASONOGRAPHY (SONOVUE®) IN DIAGNOSING HEPATIC ALVEOLAR ECHINOCOCCOSIS
  • DOI:
    10.1016/j.ultrasmedbio.2011.04.014
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Song Tao;Zhao Qin;Yang Lei
  • 通讯作者:
    Yang Lei
Seamless converging system for IPv4/IPv6 transition
IPv4/IPv6无缝过渡融合系统
Development of a novel sulphoalumitate cement-based composite combing fine steel fibers and phase change materials for thermal energy storage
开发一种新型硫铝酸盐水泥基复合材料,结合细钢纤维和相变材料用于热能储存
  • DOI:
    10.1016/j.enbuild.2018.10.039
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Sang Guochen;Cao Yanzhou;Fan Min;Lu Geyang;Zhu Yiyun;Zhao Qin;Cui Xiaoling
  • 通讯作者:
    Cui Xiaoling
21 Mechanical and interface properties of biominerals : Atomistic to coarse-grained modeling
21 生物矿物的机械和界面特性:原子到粗粒度建模
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Libonati;Zhao Qin;L. Dimas;M. Buehler
  • 通讯作者:
    M. Buehler
Ultrasensitive fluorescent probe for copper ion based on cadmium selenide/cadmium sulfide quantum dots capped with dimercaprol
基于二巯基丙醇封端的硒化镉/硫化镉量子点的铜离子超灵敏荧光探针
  • DOI:
    10.1080/00387010.2018.1452266
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Zhao Qin;Tao Guanhong;Ge Cunwang;Cai Yan;Qiao Qicheng;Jia Xueping
  • 通讯作者:
    Jia Xueping

Zhao Qin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Fellowship
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Continuing Grant
CAREER: Multiscale Mechanics of Carbon Nanotube-Polymer Composites
职业:碳纳米管-聚合物复合材料的多尺度力学
  • 批准号:
    2334166
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Fellowship
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
  • 批准号:
    2331017
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Standard Grant
Multiscale Effects of Aging on Elastic Arterial Tissue Mechanics
衰老对弹性动脉组织力学的多尺度影响
  • 批准号:
    10811244
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
CAREER: Connecting biology and mechanics through a multiscale modeling of pubertal mammary gland development
职业:通过青春期乳腺发育的多尺度建模将生物学和力学联系起来
  • 批准号:
    2240155
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Continuing Grant
CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
  • 批准号:
    2237990
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Standard Grant
Multiscale mechanics: folded globular proteins as hydrogel Lego bricks
多尺度力学:折叠球状蛋白质作为水凝胶乐高积木
  • 批准号:
    2751760
  • 财政年份:
    2022
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Studentship
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2205007
  • 财政年份:
    2022
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了