CAREER: Multiscale Mechanics of Mycelium for Lightweight, Strong, and Sustainable Composites

职业:用于轻质、坚固和可持续复合材料的菌丝体多尺度力学

基本信息

  • 批准号:
    2145392
  • 负责人:
  • 金额:
    $ 59.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will focus on revealing the fundamental principles that govern the multiscale mechanics of mycelium-based composites and integrate research into an educational program. Mycelium is massively produced during mushroom growth as the main body of fungi. It plays an essential role in altering soil chemistry and mechanics, enabling a suitable living environment for different plant species. Their growth naturally forms entanglement and bonds to integrate organic wastes, including hardwood residue, mill dust, and stalk, to produce strong and lightweight composites without adding synthetic glues or energy input. The multiscale structure of mycelium composites includes the chemistry of mycelium fiber, the mycelium-debris interface, and the complex mycelium network entangled with debris. These features synergistically determine the composite strength, elasticity, and toughness. This research project will develop computational modeling, culturing, and characterizations capabilities to understand the evolving mycelium structure in growth and the structure-mechanics relationship to yield better composites. This research will be complemented by establishing an inclusive, engaging, and inspiring educational program to the broad community, including curriculum development, giving a special exhibition on biomaterials, coordinating learn-by-play activities and seminars on computational simulations for bridge competition in a local museum, and involving K-12 in research through an institutional STEM education center. The specific goal of this project is to develop a fundamental multiscale model of mycelium-based composites, validate the model through in-lab culturing and mechanical/structural characterizations, and reveal the mechanism of making mycelium composite lightweight and strong. The research objectives of this project include (i) development of a multiscale modeling and simulations platform for the structure-mechanics relationship of mycelium-wood composite; (ii) development of Monte Carlo and generative adversarial network models to replicate and predict the growth of mycelium network; (iii) capability to use machine learning model for fast prediction of the composite mechanical properties and their scaling law with material density. In addition, the following fundamental questions will be addressed: (1) what are the roles of environmental factors and nutrition distribution in the structure and mechanics of a mycelium network; (2) what are the roles of processing parameters in the mechanics of mycelium composites. The overall focus will be on understanding the physics of mycelium composite and the potential of producing multifunctional composites from wastes. This project will allow the PI to advance the knowledge base in material science, multiscale modeling, and mechanics, and establish his long-term career in biomechanics and biomaterials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师的早期职业发展(职业)赠款将重点介绍控制基于菌丝体的复合材料的多尺度机制的基本原则,并将研究整合到教育计划中。菌丝体在蘑菇生长过程中是真菌的主体。它在改变土壤化学和力学方面起着至关重要的作用,为不同植物物种提供了合适的生活环境。它们的生长自然形成纠缠和键以整合有机废物,包括硬木残基,磨粉尘和茎,以生产强大而轻量级的复合材料,而无需添加合成胶或能量输入。菌丝体复合材料的多尺度结构包括菌丝纤维的化学,菌丝体界面和与碎屑纠缠的复杂菌丝网网络。这些特征协同确定了复合强度,弹性和韧性。该研究项目将开发计算建模,培养和特征能力,以了解生长中不断发展的菌丝结构以及结构力学关系,以产生更好的复合材料。这项研究将通过为包括课程开发在内的广泛社区建立一项具有诱人,引人入胜且鼓舞人心的教育计划,提供有关生物材料的特别展览,协调逐个学习活动和关于本地博物馆桥梁竞争的计算拟合活动,并通过机构STEM教育中心进行研究,并在当地博物馆进行桥梁竞争。该项目的具体目标是开发基于菌丝体的复合材料的基本多尺度模型,通过LAB培养和机械/结构特征来验证该模型,并揭示使菌丝体复合材料轻巧且强大的机制。该项目的研究目标包括(i)开发用于菌丝木材复合材料的结构机械关系的多尺度建模和模拟平台; (ii)开发蒙特卡洛和生成对抗网络模型,以复制和预测菌丝网网络的增长; (iii)能够使用机器学习模型快速预测复合机械性能及其具有材料密度的比例定律。此外,将解决以下基本问题:(1)环境因素和营养分布在菌丝网网络的结构和力学中的作用是什么? (2)处理参数在菌丝体复合材料力学中的作用是什么?总体重点将放在理解菌丝体复合材料的物理学以及从废物中产生多功能复合材料的潜力。该项目将使PI能够推进材料科学,多尺度建模和机械师的知识基础,并在生物力学和生物材料中建立他的长期职业。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来评估的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mycelium-based wood composites for light weight and high strength by experiment and machine learning
  • DOI:
    10.1016/j.xcrp.2023.101424
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Libin Yang;Zhao Qin
  • 通讯作者:
    Libin Yang;Zhao Qin
Effects of terminal tripeptide units on mechanical properties of collagen triple helices
  • DOI:
    10.1016/j.eml.2023.102075
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Masrouri,Milad;Qin,Zhao
  • 通讯作者:
    Qin,Zhao
Design and build a green tent environment for growing and charactering mycelium growth in lab
设计和建造一个绿色帐篷环境,用于实验室中菌丝体的生长和表征
  • DOI:
    10.1039/d3lc00336a
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yang, Libin;Xu, Ruohan;Joardar, Anushka;Amponsah, Michael;Sharifi, Nina;Dong, Bing;Qin, Zhao
  • 通讯作者:
    Qin, Zhao
Structure–mechanics relationship of hybrid polyvinyl alcohol-collagen composite by molecular dynamics simulations
  • DOI:
    10.1557/s43577-022-00416-0
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Ju-ying Zhou;Zhao Qin
  • 通讯作者:
    Ju-ying Zhou;Zhao Qin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhao Qin其他文献

STABILIZATION EFFECT OF FRICTIONS FOR TRANSONIC SHOCKS IN STEADY COMPRESSIBLE EULER FLOWS PASSING THREE-DIMENSIONAL DUCTS
通过三维管道的稳态可压缩欧拉流中跨声波激波的摩擦稳定效应
  • DOI:
    10.1007/s10473-020-0212-8
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Yuan Hairong;Zhao Qin
  • 通讯作者:
    Zhao Qin
Transcription factor 7-like 2-associated signaling mechanism in regulating cementum generation by the NF-kappa B pathway
转录因子 7 样 2 相关信号机制通过 NF-κ B 途径调节牙骨质生成
  • DOI:
    10.1002/jcp.28685
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Zhao Zifan;Dai Jing;Yin Chengcheng;Wang Xuzhu;Wang Jinyang;Jia Xiaoshi;Zhao Qin;Fu Hui;Zhang Yufeng;Xia Haibin
  • 通讯作者:
    Xia Haibin
Peeling Silicene From Model Silver Substrates in Molecular Dynamics Simulations
分子动力学模拟中从模型银基底上剥离硅烯
  • DOI:
    10.1115/1.4030888
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao Qin;Z. Xu;M. Buehler
  • 通讯作者:
    M. Buehler
Modified translabyrinthine approach for massive petrous bone cholesteatoma removal and cochlear preservation by using latent spaces anterior to cochlea.
改良经迷路入路,利用耳蜗前的潜在空间切除大量岩骨胆脂瘤并保留耳蜗。
  • DOI:
    10.1016/j.wneu.2020.07.143
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Zhen Gao;Wenjing Tang;Zhao Qin;Wei;C. Dai;F. Chi;Ya
  • 通讯作者:
    Ya
Construction of POR gene knockout, complementation and overexpression LO2 cell lines and preliminary application as AFB_1 exposed model
  • DOI:
    10.3969/j.issn.1004-1524.20230325
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Lin;Yuan Jianlin;Zhao Qin
  • 通讯作者:
    Zhao Qin

Zhao Qin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

碳纳米管增强高能推进剂-衬层粘接界面机理与力学性能多尺度表征
  • 批准号:
    12372203
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
纳米结构增强碳纤维复合材料的调控机理与多尺度力学行为
  • 批准号:
    12302179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小角中子散射结合多尺度分子动力学模拟探究固体分散体晶态转化机制
  • 批准号:
    82304413
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
模块化装配式金属基拉胀蜂窝结构可控构筑及其多尺度力学性能研究
  • 批准号:
    12372143
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于动态力学性能的超高性能混凝土多尺度组成设计与微结构调控
  • 批准号:
    52308238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Multiscale Mechanics of Carbon Nanotube-Polymer Composites
职业:碳纳米管-聚合物复合材料的多尺度力学
  • 批准号:
    2334166
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Standard Grant
CAREER: Connecting biology and mechanics through a multiscale modeling of pubertal mammary gland development
职业:通过青春期乳腺发育的多尺度建模将生物学和力学联系起来
  • 批准号:
    2240155
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Continuing Grant
CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
  • 批准号:
    2237990
  • 财政年份:
    2023
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Standard Grant
Mechano-Instructive Material Inclusions to Direct Meniscus Repair
用于直接半月板修复的力学指导材料夹杂物
  • 批准号:
    10534807
  • 财政年份:
    2022
  • 资助金额:
    $ 59.52万
  • 项目类别:
CAREER: Multiscale Mechanics of Bio-based, Reprocessable, Recyclable and Mechanically Robust Polymer Composites
职业:生物基、可再加工、可回收和机械鲁棒性聚合物复合材料的多尺度力学
  • 批准号:
    2302981
  • 财政年份:
    2022
  • 资助金额:
    $ 59.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了