CAREER: Branched Covers in Dimensions Three and Four
职业:第三维度和第四维度的分支封面
基本信息
- 批准号:2145384
- 负责人:
- 金额:$ 49.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Topology is an area of mathematics with applications to many fields, from the knotting of proteins and DNA to the structure of our universe. This project concerns the topology of three- and four-dimensional spaces, or manifolds, as well as the knotted objects they contain. To classify manifolds, one studies relationships between them; one such relationship is that of a branched cover. The PI will develop combinatorial and computational tools to study branched covers of three- and four-dimensional manifolds. Using these tools to make cutting-edge problems in the field accessible, the PI will design subprojects for undergraduate and post-baccalaureate students with a wide variety of mathematical backgrounds and professional goals. The educational component of this project expands and supports the PI’s current work in programs increasing access for women and underrepresented groups in the mathematical sciences, and addresses COVID impacts on the mathematical pipeline by providing support for students whose studies were disrupted. Crucial to this is the PI’s continued leadership role in the Center for Women in Mathematics Post-Baccalaureate Program at Smith College, as well as organization of conferences for undergraduate student researchers. These activities broaden participation in the field by preparing students for graduate study in the mathematical sciences. The project explores the geography and botany problems for branched covers of three- and four-manifolds, particularly when equipped with additional geometric structure. The geography problem asks which manifolds arise as branched covers of a given manifold, subject to constraints on the degree of the cover or complexity of the branching set; the botany problem asks for a classification of branched covering maps between a given pair of manifolds. A key strategy is the development of combinatorial and diagrammatic methods for computing invariants of knots and surfaces derived from branched covers of three- and four-manifolds, respectively. Applications will include resolution of open problems in several active areas of the field, including trisections of four-manifolds, knot concordance, and contact topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。拓扑学是一个数学领域,应用于许多领域,从蛋白质和DNA的打结到我们宇宙的结构。这个项目涉及三维和四维空间或流形的拓扑,以及它们包含的打结对象。要对流形进行分类,需要研究它们之间的关系;其中一种关系是分支覆盖的关系。PI将开发组合和计算工具来研究三维和四维流形的分支覆盖。利用这些工具,PI将为具有广泛数学背景和专业目标的本科生和研究生设计子项目,使该领域的尖端问题变得容易理解。该项目的教育部分扩大和支持了国际数学联合会目前在增加妇女和未被充分代表的群体进入数学科学领域的方案方面的工作,并通过为学习受到干扰的学生提供支持来解决COVID对数学发展渠道的影响。对此至关重要的是,PI在史密斯学院数学女性中心毕业后项目中继续发挥领导作用,并为本科生研究人员组织会议。这些活动通过让学生为数学科学的研究生学习做准备,扩大了他们在这一领域的参与。该项目探索了三流形和四流形的分支覆盖的地理和植物学问题,特别是当配备了额外的几何结构时。地理学问题问哪些流形是作为给定流形的分支覆盖出现的,受覆盖程度或分支集的复杂性的限制;植物学问题要求对给定流形对之间的分支覆盖映射进行分类。一个关键的策略是发展组合和图解方法,分别计算从三和四流形的分支覆盖导出的纽结和曲面的不变量。申请将包括解决该领域几个活跃领域的公开问题,包括四流形的三分式、结协调和接触拓扑。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Cahn其他文献
Mapping class group orbits of curves with self-intersections
- DOI:
10.1007/s11856-017-1619-3 - 发表时间:
2017-11-30 - 期刊:
- 影响因子:0.800
- 作者:
Patricia Cahn;Federica Fanoni;Bram Petri - 通讯作者:
Bram Petri
Patricia Cahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Cahn', 18)}}的其他基金
CDS&E: RUI: Collaborative Research: Data-Driven Methods in Classical Knot Theory
CDS
- 批准号:
1821212 - 财政年份:2018
- 资助金额:
$ 49.82万 - 项目类别:
Continuing Grant
相似国自然基金
BE1(BRANCHED EAR1)介导的玉米雌穗分枝发育的分子机理
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
MPS-Ascend: Bi-Orderability, Fibered Knots, and Cyclic Branched Covers
MPS-Ascend:双向可排序性、纤维结和循环分支覆盖层
- 批准号:
2213213 - 财政年份:2022
- 资助金额:
$ 49.82万 - 项目类别:
Fellowship Award
Mapping Class Groups, Branched Covers, and Rational Maps
映射类组、分支覆盖和有理映射
- 批准号:
2108572 - 财政年份:2021
- 资助金额:
$ 49.82万 - 项目类别:
Standard Grant
Elliptic surfaces, branched covers and the topology of plane curve arrangements
椭圆面、分支覆盖和平面曲线排列的拓扑
- 批准号:
20K03561 - 财政年份:2020
- 资助金额:
$ 49.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mapping Class Groups, Branched Covers, and Rational Maps
映射类组、分支覆盖和有理映射
- 批准号:
2002951 - 财政年份:2020
- 资助金额:
$ 49.82万 - 项目类别:
Standard Grant
Branched Galois Covers of Curves: Lifting and Reduction
曲线的分支伽罗瓦覆盖:提升和归约
- 批准号:
1900396 - 财政年份:2018
- 资助金额:
$ 49.82万 - 项目类别:
Standard Grant
Detecting L-spaces among branched covers of L-space knots
检测 L 空间结的分支覆盖之间的 L 空间
- 批准号:
1950953 - 财政年份:2017
- 资助金额:
$ 49.82万 - 项目类别:
Studentship
Branched Galois Covers of Curves: Lifting and Reduction
曲线的分支伽罗瓦覆盖:提升和归约
- 批准号:
1602054 - 财政年份:2016
- 资助金额:
$ 49.82万 - 项目类别:
Standard Grant
On the left-orientability of the fundamental group of homology spheres obtained as twofold covers of the 3-sphere branched over a knot.
关于同调球体基本群的左定向性,作为在结上分支的 3 球体的双重覆盖而获得。
- 批准号:
481788-2015 - 财政年份:2015
- 资助金额:
$ 49.82万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Branched covers and topology of open algebraic surfaces
开代数曲面的分支覆盖和拓扑
- 批准号:
22540052 - 财政年份:2010
- 资助金额:
$ 49.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Branched covers and Zariski pairs
分支盖和 Zariski 对
- 批准号:
19540043 - 财政年份:2007
- 资助金额:
$ 49.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)