CAREER: Learning Mechanisms from Single Cell Multi-Omics Data
职业:从单细胞多组学数据学习机制
基本信息
- 批准号:2145736
- 负责人:
- 金额:$ 65.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Cells are the fundamental units of life. Understanding how cells differentiate into various cell types and how cells change during evolutionary process has been a long-standing scientific problem. Recent sequencing and imaging technologies can provide large scale data for each single cell in a tissue, including the amount of mRNA products of a gene, the amount of protein products of certain genes, the chromatin 3D structure, and the spatial location of each cell. The project will develop computational methods to learn mechanisms in cell differentiation and development from complex and high dimensional data. The project will provide open-source tools for the community and can be integrated with educational activities and outreach, such as courses on topics of algorithms in computational biology. Opportunities for high school and undergraduate students especially those from underrepresented groups will be provided to participate in cutting-edge research in computational biology.During recent years, single cell technologies have progressed in terms of both “modality” and “scale”. In terms of modality, multi-omic technologies allow researchers to profile each single cell from multiple aspects, including transcriptome, genome, chromatin accessibility and protein abundance. In terms of scale, more cells, tissues, individuals, and species are profiled with single cell RNA-sequencing (scRNA-seq) technology. Computational integration methods have been developed to integrate single cell data from different modalities or different batches. The goal of the project is to develop integration tools with a strong emphasis on mechanisms, and to learn molecular mechanisms from the large-scale, multi-modality single cell data. The specific aims are: (1) develop methods to integrate paired and unpaired single cell multi-omics data from the same tissue, and in particular, propose a method to learn consensus cell identity considering cross-modality relationships; (2) develop deep learning methods to integrate scRNA-seq data from multiple individuals or species. The method aims to remove technical batch effects but preserve biological variation between data matrices and infer the genes which are associated with each meta feature like age and race; (3) develop methods to learn cell-specific gene regulatory networks (GRNs) for cells in a temporal or spatial context. When spatial locations of cells are available, the project will implement a method to learn both cell-specific GRNs and cell-cell interactions. This research has the potential to make a significant step forward in understanding mechanisms in cells and diseases using large-scale, multi-modality single cell data. The results of the project can be found at the PI’s website: https://xiuweizhang.wordpress.com/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。细胞是生命的基本单位。了解细胞如何分化成各种细胞类型以及细胞在进化过程中如何变化一直是一个长期存在的科学问题。最近的测序和成像技术可以为组织中的每个单细胞提供大规模数据,包括基因的mRNA产物的量、某些基因的蛋白质产物的量、染色质3D结构和每个细胞的空间位置。该项目将开发计算方法,从复杂和高维数据中学习细胞分化和发育的机制。该项目将为社区提供开源工具,并可与教育活动和外联活动相结合,例如关于计算生物学算法主题的课程。为高中生和本科生,特别是那些来自代表性不足的群体的学生提供参与计算生物学前沿研究的机会。近年来,单细胞技术在“形态”和“规模”方面都取得了进展。在模式方面,多组学技术允许研究人员从多个方面分析每个单细胞,包括转录组,基因组,染色质可及性和蛋白质丰度。就规模而言,更多的细胞、组织、个体和物种通过单细胞RNA测序(scRNA-seq)技术进行分析。已经开发了计算整合方法来整合来自不同模态或不同批次的单细胞数据。该项目的目标是开发集成工具,重点关注机制,并从大规模,多模态单细胞数据中学习分子机制。具体目标是:(1)开发整合来自同一组织的配对和未配对单细胞多组学数据的方法,特别是提出一种考虑跨模态关系的共识细胞身份学习方法;(2)开发深度学习方法,整合来自多个个体或物种的scRNA-seq数据。该方法旨在消除技术批次效应,但保留数据矩阵之间的生物学差异,并推断与每个Meta特征(如年龄和种族)相关的基因;(3)开发在时间或空间背景下学习细胞特异性基因调控网络(GRNs)的方法。当细胞的空间位置可用时,该项目将实现一种方法来学习细胞特异性GRNs和细胞间相互作用。这项研究有可能在利用大规模、多模态单细胞数据理解细胞和疾病机制方面迈出重要一步。该项目的结果可以在PI的网站上找到:https://xiuweizhang.wordpress.com/.This奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Studying temporal dynamics of single cells: expression, lineage and regulatory networks
研究单细胞的时间动态:表达、谱系和调控网络
- DOI:10.1007/s12551-023-01090-5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pan, Xinhai;Zhang, Xiuwei
- 通讯作者:Zhang, Xiuwei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuwei Zhang其他文献
Diagnostic and prognostic value of serum Cripto‐1 in patients with non‐small cell lung cancer
血清 Cripto-1 对非小细胞肺癌患者的诊断及预后价值
- DOI:
10.1111/crj.12793 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chunhua Xu;C. Chi;Qian Zhang;Y. Wang;Wei Wang;Q. Yuan;P. Zhan;Xiuwei Zhang;Yong Lin - 通讯作者:
Yong Lin
A visual-thermal image sequence registration method based on motion status statistic feature multi-resolution analysis
一种基于运动状态统计特征多分辨率分析的视热图像序列配准方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xiuwei Zhang;Yanning Zhang;Jing Zhao - 通讯作者:
Jing Zhao
Predictive value of MetS-IR for the glucose status conversion in prediabetes: a multi-center retrospective cohort study
- DOI:
10.1186/s12902-025-01974-5 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.300
- 作者:
Dixing Liu;Jiana Zhong;Wenting Xuan;Weikun Chen;Jiajing Yuan;Xiuwei Zhang;Lingjie He - 通讯作者:
Lingjie He
Transcriptional Regulatory Networks across Species
跨物种的转录调控网络
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Xiuwei Zhang - 通讯作者:
Xiuwei Zhang
Wheat β-glucan reduces obesity and hyperlipidemia in mice with high-fat and high-salt diet by regulating intestinal flora
小麦β-葡聚糖通过调节肠道菌群减轻高脂高盐饮食小鼠的肥胖和高脂血症
- DOI:
10.1016/j.ijbiomac.2024.138754 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:8.500
- 作者:
Min Li;Qingshan Wang;Xiuwei Zhang;Kaikai Li;Meng Niu;Siming Zhao - 通讯作者:
Siming Zhao
Xiuwei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuwei Zhang', 18)}}的其他基金
BBSRC-NSF/BIO: IIBR Informatics: Collaborative Research: Inference of isoform-level regulatory infrastructures with studies in steroid-producing cells
BBSRC-NSF/BIO:IIBR 信息学:合作研究:通过对类固醇生成细胞的研究推断异构体水平的监管基础设施
- 批准号:
2019771 - 财政年份:2020
- 资助金额:
$ 65.99万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
- 批准号:
EP/Y016815/1 - 财政年份:2024
- 资助金额:
$ 65.99万 - 项目类别:
Fellowship
Postdoctoral Fellowship: SPRF: Mechanisms Underlying Perceptual Learning of Accented Speech
博士后奖学金:SPRF:口音感知学习的机制
- 批准号:
2303087 - 财政年份:2024
- 资助金额:
$ 65.99万 - 项目类别:
Fellowship Award
Mechanisms of compartmentalized plasticity in learning and memory
学习和记忆的区隔可塑性机制
- 批准号:
10522519 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Learning mechanisms for perceptual decisions in biological and artificial neural systems
生物和人工神经系统中感知决策的学习机制
- 批准号:
BB/X013235/1 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Research Grant
Circuit mechanisms of arbitration between distinct reinforcement learning systems
不同强化学习系统之间的仲裁电路机制
- 批准号:
10608739 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Identifying and Promoting Mechanisms by which Learning Assistants Foster Belonging and Self-efficacy in Underserved Student Populations
识别和促进学习助理在服务不足的学生群体中培养归属感和自我效能感的机制
- 批准号:
2235244 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Standard Grant
Neural mechanisms that determine cooperation and competition between explicit and implicit learning
决定显性学习和隐性学习之间合作与竞争的神经机制
- 批准号:
23KJ2231 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reward and motivation mechanisms supporting language learning: a cross-syndrome investigation of Developmental Language Disorder (DLD) and autism
支持语言学习的奖励和动机机制:发展性语言障碍(DLD)和自闭症的跨综合症调查
- 批准号:
MR/X003647/1 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Research Grant
Mechanisms of Kallikrein 6 in Myelin Plasticity, Motor Learning, and Fear Memory
激肽释放酶 6 在髓鞘可塑性、运动学习和恐惧记忆中的机制
- 批准号:
10677390 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别: