CAREER: Sparse Graph-Based Codes for Network Data Compression

职业:用于网络数据压缩的基于稀疏图的代码

基本信息

  • 批准号:
    2145917
  • 负责人:
  • 金额:
    $ 43.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Driven by emerging systems, such as the Internet-of-things (smart homes, wearables, connected cars, and so on), society is generating and using massive amounts of data at an ever increasing rate. For example, the amount of data created over the next three years is predicted to be more than that created over the past 30 years. Without significant technological advances, existing communications infrastructure will not be able to cope with this exponential increase. This project addresses this challenge by exploring how such data can be compressed over networks to significantly reduce the traffic that needs to be transmitted. The main idea is to explore new data-compression schemes that leverage untapped gains by exploiting similarities and structure in the data as well as how the devices are connected in the network. Examples include transmitting many related measurements in different locations of the power grid to a single destination, or transmitting a video replay to the individual devices of a large crowd in a sports stadium. As such, the proposed research promises to provide a significant transformative impact on many critical applications employing reliable networked data compression, for example in the fields of healthcare, environmental monitoring, and finance. The project also includes an integrated education plan to increase participation in Science, Technology, Engineering, and Mathematics (STEM), particularly among minority groups. This objective is supported by several complementary initiatives, including targeted K-12 activities as well as related teacher training and mentoring.The proposed research significantly advances the state of the art in network data compression by employing ideas from network coding, graph theory, iterative information processing, machine learning, and circuit design. The project involves several fundamental themes related to network-aware, low-complexity, and throughput-efficient data compression schemes which are not present in previous studies: a theoretical analysis and design of general schemes for lossy source coding, involving a characterization of finite-length scaling properties under message passing encoding and analysis of harmful graphical substructures; an investigation of the fundamental rate-distortion performance of nested graph-based codes in canonical network structures, exploring the achievable network gains in compression for practical spatially coupled constructions; and algorithmic advances and novel high-speed field programmable gate array hardware architectures. The theoretical results of this project have the potential to advance our fundamental understanding of coding strategies to achieve network gains in source compression, opening new opportunities and challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在物联网(智能家居、可穿戴设备、联网汽车等)等新兴系统的推动下,社会正在以越来越快的速度生成和使用海量数据。例如,预计未来三年创造的数据量将超过过去30年创造的数据量。如果没有重大的技术进步,现有的通信基础设施将无法应对这种指数级的增长。该项目通过探索如何通过网络压缩此类数据来显著减少需要传输的流量来应对这一挑战。其主要思想是探索新的数据压缩方案,通过利用数据中的相似性和结构以及设备在网络中的连接方式来利用尚未开发的收益。例如,将电网不同位置的许多相关测量传输到一个目的地,或将视频回放传输到体育场中大量人群的单个设备。因此,拟议的研究有望对采用可靠的网络数据压缩的许多关键应用程序产生重大的变革影响,例如在医疗保健、环境监测和金融领域。该项目还包括一项综合教育计划,以增加科学、技术、工程和数学(STEM)的参与度,特别是在少数群体中。这一目标得到了几个相辅相成的倡议的支持,包括有针对性的K-12活动以及相关的教师培训和指导。拟议的研究通过采用网络编码、图论、迭代信息处理、机器学习和电路设计的思想,显著提高了网络数据压缩的最新水平。该项目涉及几个与网络感知、低复杂度和吞吐量高效的数据压缩方案有关的基本主题,这些方案在以前的研究中没有出现:有损信源编码的一般方案的理论分析和设计,涉及消息传递编码下的有限长度缩放特性的表征和有害图形子结构的分析;规范网络结构中嵌套图编码的基本率失真性能的调查,探索在实际空间耦合结构中在压缩方面可实现的网络收益;以及算法的进步和新颖的高速现场可编程门阵列硬件结构。该项目的理论成果有可能促进我们对编码策略的基本理解,从而在源代码压缩方面实现网络收益,打开新的机会和挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Minors to Construct Generator Matrices for Quasi-Cyclic LDPC Codes
使用次数构造准循环 LDPC 码的生成矩阵
Error Propagation Mitigation in Sliding Window Decoding of Spatially Coupled LDPC Codes
  • DOI:
    10.1109/jsait.2023.3312656
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Zhu;David G. M. Mitchell;M. Lentmaier;Daniel J. Costello
  • 通讯作者:
    Min Zhu;David G. M. Mitchell;M. Lentmaier;Daniel J. Costello
Optimizing quasi-cyclic spatially coupled LDPC codes by eliminating harmful objects
  • DOI:
    10.1186/s13638-023-02273-0
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Massimo Battaglioni;F. Chiaraluce;M. Baldi;Michele Pacenti;David G. M. Mitchell
  • 通讯作者:
    Massimo Battaglioni;F. Chiaraluce;M. Baldi;Michele Pacenti;David G. M. Mitchell
Joint Learning and Channel Coding for Error-Tolerant IoT Systems based on Machine Learning
基于机器学习的容错物联网系统的联合学习和信道编码
  • DOI:
    10.1109/tai.2023.3235778
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tang, Xiaochen;Reviriego, Pedro;Tang, Wei;Mitchell, David G.;Lombardi, Fabrizio;Liu, Shanshan
  • 通讯作者:
    Liu, Shanshan
A Unifying Framework to Construct QC-LDPC Tanner Graphs of Desired Girth
  • DOI:
    10.1109/tit.2022.3170331
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    R. Smarandache;David G. M. Mitchell
  • 通讯作者:
    R. Smarandache;David G. M. Mitchell
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Mitchell其他文献

AAFP Taps Veteran Family Medicine Advocate as Next CEO, from AAFP
AAFP 任命资深家庭医学倡导者为下一任首席执行官
  • DOI:
    10.1370/afm.2551
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Mitchell
  • 通讯作者:
    David Mitchell
Inclusive education
全纳教育
Earth’s ambipolar electrostatic field and its role in ion escape to space
地球的双极静电场及其在离子逸向太空的作用
  • DOI:
    10.1038/s41586-024-07480-3
  • 发表时间:
    2024-08-28
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Glyn A. Collinson;Alex Glocer;Robert Pfaff;Aroh Barjatya;Rachel Conway;Aaron Breneman;James Clemmons;Francis Eparvier;Robert Michell;David Mitchell;Suzie Imber;Hassanali Akbari;Lance Davis;Andrew Kavanagh;Ellen Robertson;Diana Swanson;Shaosui Xu;Jacob Miller;Timothy Cameron;Dennis Chornay;Paulo Uribe;Long Nguyen;Robert Clayton;Nathan Graves;Shantanab Debchoudhury;Henry Valentine;Ahmed Ghalib
  • 通讯作者:
    Ahmed Ghalib
Age‐related change in visual, spatial and verbal memory
视觉、空间和语言记忆与年龄相关的变化
  • DOI:
    10.1111/j.1741-6612.2006.00134.x
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rhonda M Shaw;E. Helmes;David Mitchell
  • 通讯作者:
    David Mitchell
Sartre, Nothingness and Perversity
萨特《虚无与反常》
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Mitchell
  • 通讯作者:
    David Mitchell

David Mitchell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Mitchell', 18)}}的其他基金

Collaborative Research: CCSS: Coding for 5G and Beyond: Limits and Efficient Algorithms
合作研究:CCSS:5G 及以后的编码:限制和高效算法
  • 批准号:
    1710920
  • 财政年份:
    2017
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2016
2016 财年 NSF 生物学博士后奖学金
  • 批准号:
    1612170
  • 财政年份:
    2016
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Fellowship Award
Implementing Ice Cloud Microphysics and Radiation Schemes into the Community Atmospheric Model (CAM)
将冰云微物理和辐射方案实施到社区大气模型 (CAM) 中
  • 批准号:
    0413401
  • 财政年份:
    2004
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
Bacteria in Glaciers: A Mechanism for Bacterial Speciation in an Extremely Cold Environment
冰川中的细菌:极冷环境中细菌物种形成的机制
  • 批准号:
    0085589
  • 财政年份:
    2000
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
Structure and Function of Flagellar Central Pair Microtubule-Associated Complexes
鞭毛中央对微管相关复合物的结构和功能
  • 批准号:
    9982062
  • 财政年份:
    2000
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: Ultraviolet Radiation Induced DNA Damage in Bacterioplankton in the Southern Ocean
合作研究:紫外线辐射引起南大洋浮游细菌 DNA 损伤
  • 批准号:
    9801785
  • 财政年份:
    1998
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
Fiber Optics Lab
光纤实验室
  • 批准号:
    9250407
  • 财政年份:
    1992
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
A Genetic and Molecular Analysis of Dynein ATPases
动力蛋白 ATP 酶的遗传和分子分析
  • 批准号:
    8702423
  • 财政年份:
    1987
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Sparse-Land模型的SAR图像噪声抑制与分割
  • 批准号:
    60971128
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
  • 批准号:
    2220574
  • 财政年份:
    2023
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
Foundations of Efficient Model Checking for Counting Logics on Structurally Sparse Graph Classes
结构稀疏图类计数逻辑的高效模型检查基础
  • 批准号:
    426003173
  • 财政年份:
    2019
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Research Grants
Image recognition using sparse graph neural networks and its application
稀疏图神经网络图像识别及其应用
  • 批准号:
    18K11380
  • 财政年份:
    2018
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CRII: CIF: Next-Generation Group Testing for Neighbor Discovery in the IoT via Sparse-Graph Codes
CRII:CIF:通过稀疏图代码在物联网中进行邻居发现的下一代组测试
  • 批准号:
    1755808
  • 财政年份:
    2018
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
Development of Extremal Graph Theory for Sparse Graphs
稀疏图极值图论的发展
  • 批准号:
    16H03952
  • 财政年份:
    2016
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
  • 批准号:
    1719674
  • 财政年份:
    2016
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
CIF:Small:Next-Generation Compressive Phase-Retrieval Using Sparse-Graph Codes: Theory, Design and Applications
CIF:Small:使用稀疏图代码的下一代压缩相位检索:理论、设计和应用
  • 批准号:
    1527767
  • 财政年份:
    2015
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
Graph-based Learning and Inference for Sparse Regularized Techniques
基于图的稀疏正则化技术的学习和推理
  • 批准号:
    1407241
  • 财政年份:
    2014
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Continuing Grant
Sparse random and pseudorandom graphs and graph Ramsey theory
稀疏随机和伪随机图以及图拉姆齐理论
  • 批准号:
    263484357
  • 财政年份:
    2014
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Research Grants
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
  • 批准号:
    1319448
  • 财政年份:
    2013
  • 资助金额:
    $ 43.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了