CRII: CIF: Next-Generation Group Testing for Neighbor Discovery in the IoT via Sparse-Graph Codes
CRII:CIF:通过稀疏图代码在物联网中进行邻居发现的下一代组测试
基本信息
- 批准号:1755808
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Group testing is a fundamental inference problem that aims to detect a set of defective items from a larger set of items via group tests. Group testing has a variety of applications in different fields including communications, computer science, machine learning, biology, and signal processing. The main challenges in group testing are to design a small number of tests such that the defective items can be reliably recovered, and to efficiently recover the defective items using a low-complexity decoding algorithm. The goal of this project is to address both challenges by developing fast and near-optimal group testing schemes. The application area that the project focuses on is active neighbor discovery in the Internet of Things (IoT). In an IoT setting, there is an abundance of low-energy devices that collect and transmit information. The main challenge in such systems is to enable a massive number of devices to communicate via a scalable and low-complexity random access scheme. This project addresses this challenge by designing large-scale active neighbor discovery protocols based on group testing.The key idea of this research is to view the group testing problem from a coding-theoretic lens to develop recovery algorithms with near-optimal sample complexity (number of tests) and optimal decoding complexity. The main ingredients of this coding-theoretic approach are to: (i) design the tests based on a sparse-graph code; (ii) develop a fast peeling-based decoder with sublinear computational complexity for detecting the defective items; and (ii) leverage powerful tools from modern coding theory such as density evolution to minimize the sample complexity of the algorithm. As a concrete application, by addressing the fundamental challenge of scale in the theory of group testing, the proposed work aims to develop active user detection schemes for large-scale communication systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分组测试是一个基本的推理问题,其目的是通过分组测试从一个较大的项目集合中检测出一组有缺陷的项目。分组测试在不同的领域有着广泛的应用,包括通信、计算机科学、机器学习、生物学和信号处理。组测试的主要挑战是设计少量的测试,使得有缺陷的项目可以可靠地恢复,并使用低复杂度的解码算法来有效地恢复有缺陷的项目。该项目的目标是通过开发快速和接近最佳的组测试方案来解决这两个挑战。该项目关注的应用领域是物联网(IoT)中的主动邻居发现。在物联网环境中,有大量的低能耗设备可以收集和传输信息。在这样的系统中的主要挑战是使大量的设备能够通过可扩展的和低复杂度的随机接入方案进行通信。本研究的核心思想是从编码理论的透镜来看待组测试问题,以开发具有接近最优样本复杂度(测试次数)和最优解码复杂度的恢复算法。这种编码理论方法的主要成分是:(i)设计基于稀疏图代码的测试;(ii)开发一种快速的基于剥离的解码器,具有次线性计算复杂度,用于检测缺陷项;以及(ii)利用现代编码理论的强大工具,如密度进化,以最大限度地减少算法的样本复杂度。作为一个具体的应用,通过解决规模的基本挑战,在理论的组测试,拟议的工作旨在开发大规模的通信系统的主动用户检测方案。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coded computation over heterogeneous clusters
- DOI:10.1109/isit.2017.8006961
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Amirhossein Reisizadeh;Saurav Prakash;Ramtin Pedarsani;A. Avestimehr
- 通讯作者:Amirhossein Reisizadeh;Saurav Prakash;Ramtin Pedarsani;A. Avestimehr
Quantized Decentralized Consensus Optimization
- DOI:10.1109/cdc.2018.8619539
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Amirhossein Reisizadeh;Aryan Mokhtari;S. Hassani;Ramtin Pedarsani
- 通讯作者:Amirhossein Reisizadeh;Aryan Mokhtari;S. Hassani;Ramtin Pedarsani
Tree Gradient Coding
- DOI:10.1109/isit.2019.8849431
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Amirhossein Reisizadeh;Saurav Prakash;Ramtin Pedarsani;A. Avestimehr
- 通讯作者:Amirhossein Reisizadeh;Saurav Prakash;Ramtin Pedarsani;A. Avestimehr
Learning Mixtures of Sparse Linear Regressions Using Sparse Graph Codes
使用稀疏图代码学习稀疏线性回归的混合
- DOI:10.1109/tit.2018.2864276
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Yin, Dong;Pedarsani, Ramtin;Chen, Yudong;Ramchandran, Kannan
- 通讯作者:Ramchandran, Kannan
Coded Computing for Distributed Graph Analytics
- DOI:10.1109/tit.2020.2999675
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Saurav Prakash;Amirhossein Reisizadeh;Ramtin Pedarsani;A. Avestimehr
- 通讯作者:Saurav Prakash;Amirhossein Reisizadeh;Ramtin Pedarsani;A. Avestimehr
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramtin Pedarsani其他文献
Asynchronous and noncoherent neighbor discovery for the IoT using sparse-graph codes
使用稀疏图代码的物联网异步和非相干邻居发现
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kabir Chandrasekher;Kangwook Lee;P. Kairouz;Ramtin Pedarsani;K. Ramchandran - 通讯作者:
K. Ramchandran
Control and Management of Urban Traffic Networks with Mixed Autonomy
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:8.7
- 作者:
Ramtin Pedarsani - 通讯作者:
Ramtin Pedarsani
Optimality of Least-squares for Classification in Gaussian-Mixture Models
高斯混合模型中分类的最小二乘最优性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hossein Taheri;Ramtin Pedarsani;Christos Thrampoulidis - 通讯作者:
Christos Thrampoulidis
Robust scheduling for flexible processing networks
灵活处理网络的鲁棒调度
- DOI:
10.1017/apr.2017.14 - 发表时间:
2016 - 期刊:
- 影响因子:1.2
- 作者:
Ramtin Pedarsani;J. Walrand;Y. Zhong - 通讯作者:
Y. Zhong
Capacity-approaching PhaseCode for low-complexity compressive phase retrieval
用于低复杂度压缩相位检索的接近容量的 PhaseCode
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ramtin Pedarsani;Kangwook Lee;K. Ramchandran - 通讯作者:
K. Ramchandran
Ramtin Pedarsani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramtin Pedarsani', 18)}}的其他基金
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236483 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: Mixed-Autonomy Traffic Networks: Routing Games and Learning Human Choice Models
合作研究:混合自主交通网络:路由博弈和学习人类选择模型
- 批准号:
1952920 - 财政年份:2020
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
MLWiNS: Optimization and Coding Theory for Fast and Robust Wireless Distributed Learning
MLWiNS:快速、稳健的无线分布式学习的优化和编码理论
- 批准号:
2003035 - 财政年份:2020
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CIF: Small: A Systematic Approach to Adversarial Machine Learning: Sparsity-based Defenses and Locally Linear Attacks
CIF:小型:对抗性机器学习的系统方法:基于稀疏性的防御和局部线性攻击
- 批准号:
1909320 - 财政年份:2019
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
- 批准号:
2337796 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
CIF: Small: Graph Structure Discovery of Networked Dynamical Systems
CIF:小:网络动力系统的图结构发现
- 批准号:
2327905 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:
2413622 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant