Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions

合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模

基本信息

  • 批准号:
    2146027
  • 负责人:
  • 金额:
    $ 24.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Many key cellular processes rely on the protein-protein and protein-nucleic acid interactions. A large and functionally important portion of these interactions is carried out by intrinsically disordered regions (IDRs) in proteins. Proteins with IDRs are involved in the pathogenesis of numerous human diseases and are considered as attractive and potent drug targets. IDRs lack a stable structure under physiological conditions and as such are particularly challenging to analyze and work with. This project addresses this challenge by developing a full suite of advanced computational tools and databases for predicting and modeling functions and structures IDR-protein and IDR-nucleic acids interactions. The knowledge of the interacting IDRs, their binding partners, and modeled 3D structures of interactions will guide building hypotheses for experiment design and interpretation of experimental data. The project will train Ph.D. students of different backgrounds through interdisciplinary coursework and mentoring at Purdue University and Virginia Commonwealth University (VCU). High school students will be recruited through outreach activities and programs that the PIs are involved in. Altogether, this project focuses on the interdisciplinary computational life science education and research efforts at Purdue and VCU.Three interlocked computational methods will be developed for studying molecular interactions of IDRs at the 1 dimensional (1D), 2D, and 3D levels, significantly advancing over the conventional solutions that are limited to 1D/sequence predictions. The corresponding aims are: (1) high-accuracy prediction of protein and nucleotide binding regions within IDR sequences using cutting-edge multi-task deep learning models (1D level); (2) integrative identification of the partner molecules (proteins and nucleic acids) for these binding regions (2D level); and (3) structure modeling by innovative docking between IDRs and the partner proteins and nucleotides (3D level). The developed tools and results will be provided to the research community through a web-based database and open source repositories. Overall, this work significantly advances structural bioinformatics field by developing modern computational tools and a database for understanding, predicting, and modeling tertiary structures of interactions of IDRs with proteins and nucleotides. The resulting new deep learning technologies will be transferrable to other bioinformatics areas that rely on the prediction and analysis from protein sequences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多关键的细胞过程依赖于蛋白质-蛋白质和蛋白质-核酸的相互作用。这些相互作用的一个大的和功能上重要的部分是由蛋白质中的固有无序区(IDR)进行的。具有IDR的蛋白质参与许多人类疾病的发病机制,并且被认为是有吸引力的和有效的药物靶标。IDR在生理条件下缺乏稳定的结构,因此对分析和工作特别具有挑战性。该项目通过开发一整套先进的计算工具和数据库来预测和建模IDR-蛋白质和IDR-核酸相互作用的功能和结构,从而解决了这一挑战。相互作用的IDR,它们的结合伙伴,和建模的3D结构的相互作用的知识将指导实验设计和实验数据的解释建立假设。该项目将培养博士。通过普渡大学和弗吉尼亚联邦大学(VCU)的跨学科课程和指导,为不同背景的学生提供服务。高中生将通过PI参与的外展活动和项目招募。总而言之,这个项目的重点是在普渡大学和VCU的跨学科计算生命科学教育和研究工作。三个互锁的计算方法将被开发用于研究IDRs的分子相互作用在1维(1D),2D和3D水平,显着推进传统的解决方案,仅限于1D/序列预测。相应的目标是:(1)使用尖端的多任务深度学习模型(1D水平)高精度预测IDR序列内的蛋白质和核苷酸结合区域;(2)整合识别这些结合区域的伴侣分子(蛋白质和核酸)(2D水平);以及(3)通过IDR与伴侣蛋白质和核苷酸之间的创新对接进行结构建模(3D水平)。开发的工具和成果将通过网络数据库和开放源码储存库提供给研究界。总的来说,这项工作通过开发现代计算工具和数据库来理解,预测和建模IDR与蛋白质和核苷酸相互作用的三级结构,显着推进了结构生物信息学领域。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resources for computational prediction of intrinsic disorder in proteins
  • DOI:
    10.1016/j.ymeth.2022.03.018
  • 发表时间:
    2022-05-27
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Kurgan,Lukasz
  • 通讯作者:
    Kurgan,Lukasz
Overview Update: Computational Prediction of Intrinsic Disorder in Proteins
  • DOI:
    10.1002/cpz1.802
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Uversky,Vladimir N.;Kurgan,Lukasz
  • 通讯作者:
    Kurgan,Lukasz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lukasz Kurgan其他文献

Corrigendum to: Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains
勘误表:蛋白质链中 DNA、RNA 和蛋白质结合残基特征的全面回顾和实证分析
  • DOI:
    10.1093/bib/bbz102
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Jian Zhang;Zhiqiang Ma;Lukasz Kurgan
  • 通讯作者:
    Lukasz Kurgan
Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins
  • DOI:
    10.1038/s41596-023-00876-x
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Lukasz Kurgan;Gang Hu;Kui Wang;Sina Ghadermarzi;Bi Zhao;Nawar Malhis;Gábor Erdős;Jörg Gsponer;Vladimir N. Uversky;Zsuzsanna Dosztányi
  • 通讯作者:
    Zsuzsanna Dosztányi
Computational prediction of MoRFs, short disorder-to-order transitioning protein binding regions
Supervised Learning: Statistical Methods
监督学习:统计方法
  • DOI:
    10.1007/978-0-387-36795-8_11
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Cios;R. Swiniarski;W. Pedrycz;Lukasz Kurgan
  • 通讯作者:
    Lukasz Kurgan
Improved prediction of residue flexibility by embedding optimized amino acid grouping into RSA-based linear models
通过将优化的氨基酸分组嵌入基于 RSA 的线性模型来改进残基灵活性的预测
  • DOI:
    10.1007/s00726-014-1817-9
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Hua Zhang;Lukasz Kurgan
  • 通讯作者:
    Lukasz Kurgan

Lukasz Kurgan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lukasz Kurgan', 18)}}的其他基金

III: Small: Integrated prediction of intrinsic disorder and disorder functions with modular multi-label deep learning
III:小:通过模块化多标签深度学习对内在无序和无序函数进行集成预测
  • 批准号:
    2125218
  • 财政年份:
    2021
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
III: Small: High-Throughput Annotation of Cellular Functions of Intrinsic Disorder in Proteins
III:小:蛋白质内在紊乱的细胞功能的高通量注释
  • 批准号:
    1617369
  • 财政年份:
    2016
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319593
  • 财政年份:
    2023
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203144
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203143
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: How do biopolymers dissolve? Identification of rate-limiting steps as a framework to design polymers with tailored dissolution.
合作研究:生物聚合物如何溶解?
  • 批准号:
    2204995
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
  • 批准号:
    2211598
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions
合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模
  • 批准号:
    2146026
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
  • 批准号:
    2211597
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
  • 批准号:
    2133110
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
Collaborative Research: How do biopolymers dissolve? Identification of rate-limiting steps as a framework to design polymers with tailored dissolution.
合作研究:生物聚合物如何溶解?
  • 批准号:
    2204996
  • 财政年份:
    2022
  • 资助金额:
    $ 24.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了