Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions

合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模

基本信息

  • 批准号:
    2146026
  • 负责人:
  • 金额:
    $ 24.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Many key cellular processes rely on the protein-protein and protein-nucleic acid interactions. A large and functionally important portion of these interactions is carried out by intrinsically disordered regions (IDRs) in proteins. Proteins with IDRs are involved in the pathogenesis of numerous human diseases and are considered as attractive and potent drug targets. IDRs lack a stable structure under physiological conditions and as such are particularly challenging to analyze and work with. This project addresses this challenge by developing a full suite of advanced computational tools and databases for predicting and modeling functions and structures IDR-protein and IDR-nucleic acids interactions. The knowledge of the interacting IDRs, their binding partners, and modeled 3D structures of interactions will guide building hypotheses for experiment design and interpretation of experimental data. The project will train Ph.D. students of different backgrounds through interdisciplinary coursework and mentoring at Purdue University and Virginia Commonwealth University (VCU). High school students will be recruited through outreach activities and programs that the PIs are involved in. Altogether, this project focuses on the interdisciplinary computational life science education and research efforts at Purdue and VCU.Three interlocked computational methods will be developed for studying molecular interactions of IDRs at the 1 dimensional (1D), 2D, and 3D levels, significantly advancing over the conventional solutions that are limited to 1D/sequence predictions. The corresponding aims are: (1) high-accuracy prediction of protein and nucleotide binding regions within IDR sequences using cutting-edge multi-task deep learning models (1D level); (2) integrative identification of the partner molecules (proteins and nucleic acids) for these binding regions (2D level); and (3) structure modeling by innovative docking between IDRs and the partner proteins and nucleotides (3D level). The developed tools and results will be provided to the research community through a web-based database and open source repositories. Overall, this work significantly advances structural bioinformatics field by developing modern computational tools and a database for understanding, predicting, and modeling tertiary structures of interactions of IDRs with proteins and nucleotides. The resulting new deep learning technologies will be transferrable to other bioinformatics areas that rely on the prediction and analysis from protein sequences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多关键的细胞过程依赖于蛋白质-蛋白质和蛋白质-核酸的相互作用。这些相互作用中有很大一部分是由蛋白质中的固有无序区域(IDR)进行的,并且具有重要的功能。具有IDRs的蛋白质与许多人类疾病的发病机制有关,被认为是有吸引力的有效药物靶点。IDR在生理条件下缺乏稳定的结构,因此分析和处理特别具有挑战性。该项目通过开发一整套先进的计算工具和数据库来应对这一挑战,以预测和模拟IDR-蛋白质和IDR-核酸相互作用的功能和结构。相互作用的IDR、它们的结合伙伴和相互作用的建模3D结构的知识将指导建立实验设计和实验数据解释的假设。该项目将通过普渡大学和弗吉尼亚联邦大学(VCU)的跨学科课程和指导来培养不同背景的博士生。高中生将通过PI参与的外展活动和计划招募。总而言之,这个项目集中在普渡大学和VCU的跨学科计算生命科学教育和研究工作,将开发三种互锁计算方法来研究一维(1D)、二维和三维水平上的IDR的分子相互作用,显著优于仅限于一维/序列预测的传统解决方案。相应的目标是:(1)使用尖端多任务深度学习模型(1D水平)高精度预测IDR序列中的蛋白质和核苷酸结合区域;(2)整合识别这些结合区域的伙伴分子(蛋白质和核酸)(2D水平);以及(3)通过IDR与伙伴蛋白质和核苷酸之间的创新对接进行结构建模(3D水平)。开发的工具和成果将通过基于网络的数据库和开放源码储存库提供给研究界。总体而言,这项工作通过开发现代计算工具和数据库来理解、预测和模拟IDR与蛋白质和核苷酸相互作用的三级结构,从而显著推动了结构生物信息学领域的发展。由此产生的新的深度学习技术将被转移到其他依赖于蛋白质序列预测和分析的生物信息学领域。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assembly of Protein Complexes in and on the Membrane with Predicted Spatial Arrangement Constraints
  • DOI:
    10.1016/j.jmb.2024.168486
  • 发表时间:
    2024-02-16
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Christoffer,Charles;Harini,Kannan;Kihara,Daisuke
  • 通讯作者:
    Kihara,Daisuke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daisuke Kihara其他文献

NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation
NuFold:具有灵活核碱基中心表示的 RNA 三级结构预测的端到端方法
  • DOI:
    10.1038/s41467-025-56261-7
  • 发表时间:
    2025-01-21
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yuki Kagaya;Zicong Zhang;Nabil Ibtehaz;Xiao Wang;Tsukasa Nakamura;Pranav Deep Punuru;Daisuke Kihara
  • 通讯作者:
    Daisuke Kihara
Local surface shape-based protein function prediction using Zernike descriptors
  • DOI:
    10.1016/j.bpj.2008.12.3435
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daisuke Kihara;Lee Sael;Rayan Chikhi
  • 通讯作者:
    Rayan Chikhi
Effect of phosphorylation barcodes on arrestin binding to a chemokine receptor
磷酸化条形码对 arrestin 与趋化因子受体结合的影响
  • DOI:
    10.1038/s41586-025-09024-9
  • 发表时间:
    2025-05-21
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Qiuyan Chen;Christopher T. Schafer;Somnath Mukherjee;Kai Wang;Martin Gustavsson;James R. Fuller;Katelyn Tepper;Thomas D. Lamme;Yasmin Aydin;Parth Agrawal;Genki Terashi;Xin-Qiu Yao;Daisuke Kihara;Anthony A. Kossiakoff;Tracy M. Handel;John J. G. Tesmer
  • 通讯作者:
    John J. G. Tesmer
Vesper: Global and Local Cryo-Em Map Alignment and Database Search using Local Density Vectors
  • DOI:
    10.1016/j.bpj.2020.11.720
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Genki Terashi;Xusi Han;Charles Christoffer;Siyang Chen;Daisuke Kihara
  • 通讯作者:
    Daisuke Kihara
De Novo Computational Protein Tertiary Structure Modeling Pipeline for Cryo-EM Maps of Intermediate Resolution
  • DOI:
    10.1016/j.bpj.2019.11.1657
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Daisuke Kihara;Genki Terashi;Sai Raghavendra Maddhuri Venkata Subramaniya
  • 通讯作者:
    Sai Raghavendra Maddhuri Venkata Subramaniya

Daisuke Kihara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daisuke Kihara', 18)}}的其他基金

Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
  • 批准号:
    2151678
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
  • 批准号:
    2211598
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
IIBR Informatics: Development of Multimodal approaches for protein function prediction
IIBR 信息学:蛋白质功能预测多模式方法的开发
  • 批准号:
    2003635
  • 财政年份:
    2020
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: Revealing a new mechanism of action for eukaryotic transcriptional activation domains
合作研究:RoL:揭示真核转录激活域的新作用机制
  • 批准号:
    1925643
  • 财政年份:
    2019
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient mathematical and computational framework for biological 3D image data retrieval
协作研究:生物 3D 图像数据检索的高效数学和计算框架
  • 批准号:
    1614777
  • 财政年份:
    2016
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
ABI Innovation: Protein Functional Sites Identification Using Sequence Variation
ABI Innovation:利用序列变异识别蛋白质功能位点
  • 批准号:
    1262189
  • 财政年份:
    2013
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
III: Small: Rapid screening of interacting ligands and proteins
III:小:快速筛选相互作用的配体和蛋白质
  • 批准号:
    1319551
  • 财政年份:
    2013
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
III: Small: Quality Assessment of Computational Protein Models
III:小:计算蛋白质模型的质量评估
  • 批准号:
    0915801
  • 财政年份:
    2009
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Template-Based Protein Structure Prediction Beyond Sequence Homology
超越序列同源性的基于模板的蛋白质结构预测
  • 批准号:
    0850009
  • 财政年份:
    2009
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319593
  • 财政年份:
    2023
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203144
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203143
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: How do biopolymers dissolve? Identification of rate-limiting steps as a framework to design polymers with tailored dissolution.
合作研究:生物聚合物如何溶解?
  • 批准号:
    2204995
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
  • 批准号:
    2211598
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions
合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模
  • 批准号:
    2146027
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
  • 批准号:
    2211597
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
  • 批准号:
    2133110
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Collaborative Research: How do biopolymers dissolve? Identification of rate-limiting steps as a framework to design polymers with tailored dissolution.
合作研究:生物聚合物如何溶解?
  • 批准号:
    2204996
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了