Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy

合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗

基本信息

  • 批准号:
    2203143
  • 负责人:
  • 金额:
    $ 23.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Being able to walk easily is strongly associated with independence and quality of life. Aging is accompanied by a significant reduction in mobility. Existing treatments and therapies rely on respiratory measurements of walking effort. These respiratory measurements can only quantify the average effort of walking. As a result of this limitation, existing treatments and therapies sometimes fail to target the phases of the walking motion that need the most assistance. This project will use data-driven approaches and models to overcome limitations in the ability to measure the effort of walking. Access to this new information will enable evaluating how therapies affect different stages of motion. The data-driven methods will be initially developed using a dataset generated by a computer walking models with physically induced changes to specific stages of motion. For example, forward-pulling forces will be applied to the waist of the model to induce changes that can be leveraged to detect the fluctuations in walking effort. This computer walking model provides access to a complete measure of the effort required for walking, which will be used to validate the data-driven methods. Next, the new data-driven methods will be validated using measurements from real human walking experiments. In these human experiments, pulling forces will be applied by a robotic tether connected to the waist of the participant to induce changes that will be used to detect the effort of the different motion stages. In the final studies, the methods will be used to determine how the effort required for walking differs in younger and older adults. The differences in the effort will be characterized in each stage of motion using human experiments with both younger and older adults. The outcomes of this project will help lead to the creation of enhanced treatments and assistive devices that improve all stages of motion. Throughout this project, the investigators will provide courses for older adults on the mechanics and health aspects of walking and data science and digital engineering through the Osher Lifelong Learning Institute.The goal of this project is to leverage new data-driven approaches to characterize differences in metabolic cost of phases of the gait cycle in old versus young adults. The project will combine novel, data-driven approaches based on system identification and robotic perturbations to characterize the time profile of signals that cannot be measured directly, such as metabolic cost. The first objective will produce the time profile of metabolic cost within simulated gait data. Novel data-driven approaches will be developed based on weighted regression, neural networks, and autoencoders to identify the metabolic cost time profile from biomechanical signals. Initially, these methods will be created in a predictive walking simulation from which the metabolic time profile is fully known, such that the new methods can be evaluated during their development. The second objective will evaluate different time profile estimation approaches in human experiments. The methods created in the first objective will be tested using human experiments with robotic perturbations. The capacity of using the data-driven methods to detect changes in swing and push-off will also be investigated using human experiments where elastic ankle tethers or added mass are used to introduce direct changes to the gait cycle. The third objective will characterize the differences in cost contributions of the phases of the gait cycle between older and younger adults. The first subtask will characterize the phase-specific differences in metabolic cost by applying the data-driven methods to compute the instantaneous costs using measured data from younger and older adults. The second subtask will determine the generalizability of the data-driven time-profile estimation approaches across different populations. This research will transform gait analysis by providing access to dynamic metabolic cost time profiles, which cannot be measured using existing techniques. Access to this new information will lead to improvements across multiple biomechanics applications, including (1) diagnosis of motion impairments, (2) prescription of targeted assistive devices, and (3) targeted rehabilitation exercises. This project is jointly funded by the Disability and Rehabilitation Engineering Program (DARE) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够轻松行走与独立性和生活质量密切相关。老龄化伴随着流动性的显著降低。现有的治疗和疗法依赖于行走努力的呼吸测量。这些呼吸测量只能量化步行的平均努力。由于这种限制,现有的治疗和疗法有时无法瞄准需要最多辅助的行走运动的阶段。该项目将使用数据驱动的方法和模型来克服测量步行努力的能力的局限性。获得这些新信息将有助于评估治疗如何影响不同阶段的运动。数据驱动的方法最初将使用由计算机步行模型生成的数据集开发,该模型具有对特定运动阶段的物理诱导变化。例如,向前拉力将被施加到模型的腰部,以引起可以用来检测步行努力的波动的变化。这个计算机步行模型提供了对步行所需努力的完整测量,这将用于验证数据驱动的方法。接下来,新的数据驱动方法将使用来自真实的人类行走实验的测量结果进行验证。在这些人体实验中,拉力将由连接到参与者腰部的机器人系绳施加,以引起将用于检测不同运动阶段的努力的变化。在最后的研究中,这些方法将用于确定年轻人和老年人步行所需的努力有何不同。在努力的差异将在每个阶段的运动使用人体实验与年轻人和老年人的特点。该项目的成果将有助于创造改善运动各个阶段的强化治疗和辅助设备。在整个项目中,研究人员将通过Osher终身学习研究所为老年人提供有关步行力学和健康方面以及数据科学和数字工程的课程。该项目的目标是利用新的数据驱动方法来表征老年人与年轻人步态周期各阶段代谢成本的差异。该项目将结合联合收割机基于系统识别和机器人扰动的新型数据驱动方法,以表征无法直接测量的信号的时间曲线,例如代谢成本。第一个目标将在模拟步态数据内产生代谢成本的时间曲线。将基于加权回归、神经网络和自动编码器开发新的数据驱动方法,以从生物力学信号中识别代谢成本时间曲线。最初,这些方法将在预测性步行模拟中创建,其中代谢时间曲线是完全已知的,因此可以在开发过程中对新方法进行评估。第二个目标将在人体实验中评估不同的时间分布估计方法。在第一个目标中创建的方法将使用具有机器人扰动的人类实验进行测试。还将使用人体实验研究使用数据驱动方法检测摆动和推离变化的能力,其中使用弹性踝关节系绳或增加的质量来引入步态周期的直接变化。第三个目标将描述老年人和年轻人之间步态周期各阶段的成本贡献差异。第一个子任务将通过应用数据驱动的方法来表征代谢成本的阶段特异性差异,以使用来自年轻人和老年人的测量数据来计算瞬时成本。第二子任务将确定数据驱动的时间分布估计方法在不同人群中的普遍性。这项研究将通过提供动态代谢成本时间曲线来改变步态分析,这是使用现有技术无法测量的。获得这些新信息将导致多个生物力学应用的改进,包括(1)运动障碍的诊断,(2)有针对性的辅助设备的处方,以及(3)有针对性的康复练习。 该项目由残疾和康复工程计划(DARE)和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philippe Malcolm其他文献

EFFECTS OF ANKLE EXOSKELETON POWER AND ACTUATION TIMING ON MOVEMENT VARIABILITY AND METABOLIC COST OF WALKING
踝外骨骼功率和驱动时间对行走运动可变性和代谢成本的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kayla Anderson;Christopher Wichman;Gikk Kimberly A. Turman;Ortho Specialists;A. S. Lanier;T. Grindstaff;Prokopios Antonellis;S. Galle;D. D. Clercq;Philippe Malcolm;Alyssa Averhoff;Zach Motz;M. JordanWickstrom;PhD Anatasia Kyvelidou;RJ Barber;Keaton Young;J. Yentes;D. Dudley;Cht J. Peck OTL;R. Srivastava;M. S. Cpo;J. Pierce;N. Than;C. Copeland;J. M. Zuniga;F. Panizzolo;Jozefien Speeckaert;Jinsoo Kim;Hao Su;Giuk Lee;I. Galiana;K. Holt;Conor J. Walsh;Chase G Rock;V. Marmelat;Kota Z. Takahashi;Fatemeh Salari Esker;Mansour Eslami;Benjamin Senderling
  • 通讯作者:
    Benjamin Senderling

Philippe Malcolm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
  • 批准号:
    2230060
  • 财政年份:
    2023
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
  • 批准号:
    2230061
  • 财政年份:
    2023
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203144
  • 财政年份:
    2022
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: MEDUSA: Mid-band Environmental Sensing Capability for Detecting Incumbents during Spectrum Sharing
合作研究:SWIFT:MEDUSA:用于在频谱共享期间检测现有企业的中频环境传感能力
  • 批准号:
    2229444
  • 财政年份:
    2022
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: MEDUSA: Mid-band Environmental Sensing Capability for Detecting Incumbents during Spectrum Sharing
合作研究:SWIFT:MEDUSA:用于在频谱共享期间检测现有企业的中频环境传感能力
  • 批准号:
    2229445
  • 财政年份:
    2022
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
  • 批准号:
    2341843
  • 财政年份:
    2022
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: TTP: Small: eSLIC: Enhanced Security Static Analysis for Detecting Insecure Configuration Scripts
协作研究:SaTC:TTP:小型:eSLIC:用于检测不安全配置脚本的增强安全静态分析
  • 批准号:
    2247141
  • 财政年份:
    2022
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Flanker: Automatically Detecting Lateral Movement in Organizations Using Heterogeneous Data and Graph Representation Learning
协作研究:SaTC:核心:小型:侧翼:使用异构数据和图表示学习自动检测组织中的横向运动
  • 批准号:
    2127232
  • 财政年份:
    2021
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了