EAGER: Magnetically Induced Catalysts for Active and Selective CO2 Reduction under Mild Conditions
EAGER:在温和条件下主动选择性二氧化碳还原的磁感应催化剂
基本信息
- 批准号:2146591
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Catalysis plays an essential role in facilitating fast and energy-efficient manufacturing of fuels and chemicals from raw feedstocks. Most fuels and chemicals are still derived from fossil fuel resources. However, significant research progress has been made in recent years exploring alternative, renewable and/or sustainable chemical processes, based on electrocatalysis, photocatalysis, and other electrically powered technologies such as microwave- and plasma-assisted catalysis. Following this trend, the project explores the feasibility of magnetically inductive catalysts for carbon dioxide (CO2) reduction to carbon monoxide (CO) under mild, energy-efficient reaction conditions. In addition to mitigating carbon emissions - in the form of CO2 from combustion sources such as power plants - the CO product can be used to manufacture a wide range of organic chemicals and hydrocarbon fuels via established downstream processes. The project extends prior catalysis research related to magnetic inductive heating through a convergent approach integrating nanoparticle technology developed for biomedical applications with both advanced experimental and theoretical methods of heterogeneous catalysis research. The NSF EAGER (EArly-concept Grant for Exploratory Research) funding mechanism is ideal for this study aimed at assessing the feasibility of novel technology that is risky, but potentially transformative in maintaining U.S. leadership in clean energy technology. Beyond the technical aspects, the project includes educational and outreach initiatives contributing to the education of K-12, undergraduate, and graduate students, with significant emphasis on broadening participation of individuals from underrepresented groups. The project builds on the inductive magnetic hysteresis caused by response of ferromagnetic materials to an alternating magnetic field. Since the heat is generated directly at the catalyst surface, it can be efficiently delivered to the catalytic species. Because of this, reactor feeds may not need to be heated, allowing operation at milder conditions than typically employed in thermal catalysis. While electricity must still be supplied to generate the magnetic field, the more efficient heat transfer creates an opportunity to significantly increase catalytic reactor efficiency by designing materials that are optimized for energy delivery and catalytic performance. The project integrates simulations and experiments to design, characterize, and evaluate magnetically inductive nanoparticles for the reverse water gas shift (RWGS) reaction. The project includes collaboration with Johnson Matthey to assess translational potential; for example, to facilitate fast light-off for automotive exhaust catalysts. The project also explores opportunities for creating a range of magnetite (Fe3O4) nanoparticles doped with other metals to tune catalyst reactivity and selectivity while maintaining efficient energy transfer. To that end, the project will include a modeling component that predicts magnetic properties and their relationship to catalyst performance. In addition, the alternating magnetic field associated with the inductive heating creates opportunities for dynamic catalysis. Potential risks associated with the technology will also be addressed, including catalyst composition and structure limitations (e.g., magnetic properties as a function of particle size and composition), temperature limitations (e.g., phase stability under reaction conditions), and oxidative stability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
催化在促进从原料中快速高效地制造燃料和化学品方面起着至关重要的作用。大多数燃料和化学品仍然来自化石燃料资源。然而,近年来在探索基于电催化、光催化和其他电力技术(如微波和等离子体辅助催化)的替代、可再生和/或可持续化学过程方面取得了重大进展。根据这一趋势,该项目探索了磁感应催化剂在温和、节能的反应条件下将二氧化碳(CO2)还原为一氧化碳(CO)的可行性。除了减少碳排放(来自发电厂等燃烧源的二氧化碳形式)之外,CO产品还可以通过既定的下游工艺用于制造各种有机化学品和碳氢化合物燃料。该项目通过将生物医学应用的纳米颗粒技术与多相催化研究的先进实验和理论方法结合起来,扩展了与磁感应加热相关的先前催化研究。美国国家科学基金会(NSF)的EAGER(早期概念探索性研究资助)资助机制是这项研究的理想选择,该研究旨在评估新技术的可行性,这些技术有风险,但有可能改变美国在清洁能源技术方面的领导地位。除了技术方面,该项目还包括教育和推广活动,为K-12、本科生和研究生的教育做出贡献,重点是扩大代表性不足群体的个人参与。该项目建立在铁磁材料对交变磁场响应引起的感应磁滞的基础上。由于热量是直接在催化剂表面产生的,因此它可以有效地传递给催化物种。因此,反应器进料可能不需要加热,允许在比热催化通常使用的更温和的条件下操作。虽然产生磁场仍然需要电力供应,但通过设计优化能量输送和催化性能的材料,更有效的传热为显著提高催化反应器效率创造了机会。该项目将模拟和实验相结合,设计、表征和评估用于反水气转换(RWGS)反应的磁感应纳米颗粒。该项目包括与庄信万丰合作评估翻译潜力;例如,促进汽车尾气催化剂的快速点火。该项目还探索了制造一系列与其他金属掺杂的磁铁矿(Fe3O4)纳米颗粒的机会,以调整催化剂的反应性和选择性,同时保持有效的能量转移。为此,该项目将包括一个建模组件,预测磁性及其与催化剂性能的关系。此外,与感应加热相关的交变磁场为动态催化创造了机会。与该技术相关的潜在风险也将得到解决,包括催化剂组成和结构限制(例如,磁性作为粒度和组成的函数),温度限制(例如,反应条件下的相稳定性)和氧化稳定性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainties in the reactivity of atomically dispersed catalytic metal: Can any single-atom catalyst work like a charm?
- DOI:10.1016/j.checat.2023.100735
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Ewa Chukwu;Ming Yang
- 通讯作者:Ewa Chukwu;Ming Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olin Mefford其他文献
Olin Mefford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olin Mefford', 18)}}的其他基金
Student Travel Scholarships for Telluride Science Research Meeting on ?Frontiers in Biomagnetic Particles IV,? in Telluride CO June 23-26, 2015.
碲化物科学研究会议“生物磁性粒子 IV 前沿”学生旅行奖学金
- 批准号:
1462064 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Travel Scholarships for Frontiers in BioMagnetic Particles 2013
2013 年生物磁性粒子前沿旅行奖学金
- 批准号:
1248199 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Symposium - Frontiers in BioMagnetic Particles II
研讨会 - 生物磁性粒子前沿 II
- 批准号:
1123052 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Pattern Transfer Nanomanufacturing with Magnetically-Recorded Nanotemplates
合作研究:利用磁记录纳米模板进行图案转移纳米制造
- 批准号:
1130819 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Evaluation of Nanoparticle Behavior During Transitions from Engineered to Natural Systems
从工程系统向自然系统过渡期间纳米粒子行为的评估
- 批准号:
1057633 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Symposium - ACS POLY - Bioactive Polymer and Polymer Surfaces
研讨会 - ACS POLY - 生物活性聚合物和聚合物表面
- 批准号:
1037544 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Investigations of the Size Effects on the Relaxation Rates of Polymer Coated Magnetic Nanoparticles for Hyperthermia
热疗用聚合物包覆磁性纳米颗粒弛豫率的尺寸效应研究
- 批准号:
0907167 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Magnetically Induced Thermoset Curing: A novel method for on demand adhesion
磁诱导热固性固化:一种按需粘合的新方法
- 批准号:
10020486 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Magnetically-induced topological phases in superconductor-semiconductor qubits
超导-半导体量子位中的磁致拓扑相
- 批准号:
2275309 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Studentship
Magnetically-Assisted Laser-Induced Plasma Micro-Machining for Flexible and Fast Texturing of Functional Surfaces
用于功能表面灵活快速纹理化的磁辅助激光诱导等离子体微加工
- 批准号:
1563244 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Pressure-Induced Magnetically Ordered State and Critical Phenomena in the vicinity of the phase Transition of Single-Ground-State Quantum Mangnets
单基态量子磁体相变附近的压力诱导磁有序态和临界现象
- 批准号:
16K05414 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular analysis of mechanobiological reactions of human mesenchymal stem cells on biomechanical extracelluar cues induced by magnetically actuated microstructures - µMSC
磁驱动微结构诱导的人间充质干细胞对生物力学细胞外信号的机械生物学反应的分子分析 - µMSC
- 批准号:
254846193 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Risk assessment of magnetically induced neuronal stimulation by using portable magnetosensor and motion capture system
使用便携式磁传感器和运动捕捉系统进行磁感应神经元刺激的风险评估
- 批准号:
22790555 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study in magnetically-induced ferroelectricity on a zigzag-chain antiferromagnet
锯齿链反铁磁体磁感铁电研究
- 批准号:
22540347 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex potentials and collisional modification in cold atoms using electro-magnetically induced transparency
使用电磁感应透明性进行冷原子的复势和碰撞修饰
- 批准号:
0653494 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Magnetically induced anions of rare gas clusters and polar molecules
稀有气体团簇和极性分子的磁感应阴离子
- 批准号:
26334721 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Research Grants