Minimal Surfaces in Geometric Variational Problems

几何变分问题中的最小曲面

基本信息

  • 批准号:
    2147521
  • 负责人:
  • 金额:
    $ 11.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Differential geometry is a modern version of Euclidean geometry that studies shapes inside curved surfaces in any number of dimensions. Two key notions in differential geometry, besides "length" and "angle," are: "minimal surfaces," which generalize the concept of a straight line, and "curvature," which measures how a surface is bent. The early development of differential geometry is partly attributable to physics. In the early 20th century, Einstein formulated a geometric theory of gravitation, general relativity, asserting that we live in a curved four-dimensional world ("spacetime") where energy and mass are manifestations of the curvature of spacetime, and minimal surfaces are indicative of black hole boundaries. Nowadays, differential geometry and minimal surfaces are at the heart of several physical theories and active mathematical research directions. The principal investigator (PI) will study problems regarding minimal surfaces that are motivated by general relativity and by the van der Walls--Cahn--Hilliard theory of phase transitions for multicomponent alloy systems. This project will also support the proposer's efforts to promote student learning, inclusion, and training through summer schools, workshops, and conferences, as well as via expository articles and notes.This project spans three related active research areas of minimal surface theory in differential geometry. First, the PI will investigate the construction of minimal surfaces as limiting min-max phase transitions. This construction has been recently shown to exhibit certain desirable stability properties that led to the proof of the "multiplicity one min-max conjecture" in three dimensions by the PI and Chodosh. The PI will continue this program, to produce surfaces with different curvatures and in different dimensions, as well as to better understand geometric implications of stable phase transitions. Second, as a step toward understanding limits of manifolds with nonnegative scalar curvature, the PI will study smooth and non-smooth three- and four-dimensional manifolds with nonnegative scalar curvature via the inherent bending effects of their embedded minimal surfaces. Third, the PI will apply this study of bending effects of minimal surfaces to investigate conjectured relationships between different mass notions in general relativity, where time-symmetric initial data sets are precisely manifolds with nonnegative scalar curvature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微分几何是欧几里德几何的现代版本,它研究任意维数的曲面内部的形状。微分几何中的两个关键概念,除了“长度”和“角度”,是:“最小曲面”,它概括了直线的概念,和“曲率”,它测量曲面如何弯曲。微分几何的早期发展部分归因于物理学。在世纪早期,爱因斯坦提出了一个引力的几何理论,即广义相对论,声称我们生活在一个弯曲的四维世界(“时空”)中,能量和质量是时空曲率的表现,最小表面是黑洞边界的指示。如今,微分几何和极小曲面是几个物理理论和活跃的数学研究方向的核心。主要研究者(PI)将研究由广义相对论和货车der Walls-Cahn-Hilliard多组分合金系统相变理论激发的最小表面问题。该项目还将通过暑期学校、研讨会和会议以及临时文章和笔记支持提议者促进学生学习、包容和培训的努力。该项目跨越微分几何中最小曲面理论的三个相关的活跃研究领域。首先,PI将研究最小表面的构造作为限制最小-最大相变。这种结构最近已被证明表现出某些理想的稳定性,导致证明的“多重性一个最小-最大猜想”在三维的PI和Chodosh。PI将继续这一计划,以产生不同曲率和不同尺寸的表面,以及更好地理解稳定相变的几何含义。其次,作为理解具有非负标量曲率的流形极限的一步,PI将通过嵌入极小曲面的固有弯曲效应来研究具有非负标量曲率的光滑和非光滑三维和四维流形。第三,PI将应用最小曲面弯曲效应的研究来调查广义相对论中不同质量概念之间的关系,其中时间对称的初始数据集是具有非负标量曲率的精确流形。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The p-widths of a surface
  • DOI:
    10.1007/s10240-023-00141-7
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Otis Chodosh;Christos Mantoulidis
  • 通讯作者:
    Otis Chodosh;Christos Mantoulidis
Variational aspects of phase transitions with prescribed mean curvature
Ancient gradient flows of elliptic functionals and Morse index
  • DOI:
    10.1353/ajm.2022.0010
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    K. Choi;Christos Mantoulidis
  • 通讯作者:
    K. Choi;Christos Mantoulidis
Decomposing 4-manifolds with positive scalar curvature
  • DOI:
    10.1016/j.aim.2023.109231
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Bamler;Chao Li-;Christos Mantoulidis
  • 通讯作者:
    R. Bamler;Chao Li-;Christos Mantoulidis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Mantoulidis其他文献

Metrics with $$\lambda _1(-\Delta + k R) \ge 0$$ and Flexibility in the Riemannian Penrose Inequality
  • DOI:
    10.1007/s00220-023-04679-9
  • 发表时间:
    2023-03-04
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Chao Li;Christos Mantoulidis
  • 通讯作者:
    Christos Mantoulidis
moving by mean curvature flow
按平均曲率流移动
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christos Mantoulidis
  • 通讯作者:
    Christos Mantoulidis
Generic regularity for minimizing hypersurfaces in dimensions 9 and 10
最小化 9 维和 10 维超曲面的通用正则
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Otis Chodosh;Christos Mantoulidis;F. Schulze
  • 通讯作者:
    F. Schulze
Allen–Cahn min-max on surfaces
  • DOI:
    10.4310/jdg/1609902018
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Christos Mantoulidis
  • 通讯作者:
    Christos Mantoulidis
BRIAN WHITE-MINIMAL SURFACES (MATH 258) LECTURE NOTES NOTES BY OTIS CHODOSH AND CHRISTOS MANTOULIDIS
BRIAN WHITE-极小曲面(数学 258) 讲座笔记 OTIS CHODOSH 和 CHRISTOS MANTOULIDIS 的笔记
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christos Mantoulidis;B. White;D. Hoffman
  • 通讯作者:
    D. Hoffman

Christos Mantoulidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Mantoulidis', 18)}}的其他基金

Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
  • 批准号:
    2050120
  • 财政年份:
    2020
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
  • 批准号:
    1905165
  • 财政年份:
    2019
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant

相似海外基金

Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
  • 批准号:
    2050120
  • 财政年份:
    2020
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
Minimal Surfaces and Geometric Flows
最小曲面和几何流
  • 批准号:
    2031696
  • 财政年份:
    2020
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
  • 批准号:
    1905165
  • 财政年份:
    2019
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
Geometric measure theory and minimal surfaces
几何测量理论和最小曲面
  • 批准号:
    1936911
  • 财政年份:
    2017
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Studentship
Minimal and constant mean curvature surfaces: their geometric and topological properties.
最小和恒定平均曲率曲面:它们的几何和拓扑特性。
  • 批准号:
    EP/M024512/1
  • 财政年份:
    2015
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Research Grant
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    386420-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Discovery Grants Program - Individual
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    386420-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Discovery Grants Program - Individual
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    386420-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Discovery Grants Program - Individual
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    396098-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    396098-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了