Minimal and constant mean curvature surfaces: their geometric and topological properties.
最小和恒定平均曲率曲面:它们的几何和拓扑特性。
基本信息
- 批准号:EP/M024512/1
- 负责人:
- 金额:$ 31.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While the theory of minimal and constant mean curvature (CMC) surfaces is a purely mathematical one, such surfaces overtly present themselves in nature and are studied in many material sciences. This makes the theory more exciting. If we take a closed wire and dip it in and out of soapy water, the soap film that forms across the loop is in fact a minimal surface and the physical properties of soap films were already studied by Plateau in the 1850s. The air pressure on the sides of soap films is equal and constant. However, if we change the pressure on one side, for instance by blowing air on it, the new surface that we obtain is what we call a soap bubble. A soap bubble is a CMC surface. More precisely, minimal and CMC surfaces are, respectively, mathematical idealisation of soap films and soap bubbles. The mean curvature of a soap film and bubble is a quantity that is proportional to the pressure difference on the sides of the film. The value of the pressure difference, and therefore of the mean curvature, is zero for a soap film/minimal surface and it is non-zero constant for a soap bubble/CMC surface. Since the pressure inside a small bubble is greater than the pressure inside a big one, the constant mean curvature of a small bubble is greater than the constant mean curvature of a big one. Minimal and CMC surfaces also enjoy crucial minimising properties relative to area. Among all surfaces spanning a given boundary, a soap film/minimal surface is one with locally least area; soap bubbles/CMC surfaces locally minimise area under a volume constraint. This project aims to investigate several key geometric properties of minimal and CMC surfaces. Roughly speaking, I intend to prove several results about CMC surfaces embedded in a flat three-dimensional manifold, including area estimates when the surfaces are compact with bounded genus and the ambient manifold is compact. I also plan to study the limits of a sequence of minimal or CMC surfaces embedded in a general three-dimensional manifold.
虽然最小和恒定平均曲率(CMC)曲面的理论是一个纯粹的数学理论,但这种曲面在自然界中公开存在,并在许多材料科学中进行研究。这使得理论更加令人兴奋。如果我们拿一根闭合的金属丝,把它浸在肥皂水里,然后从肥皂水里出来,在环上形成的肥皂膜实际上是一个最小的表面,19世纪50年代,Plateau已经研究了肥皂膜的物理特性。肥皂膜两侧的空气压力相等且恒定。然而,如果我们改变一侧的压力,例如通过吹空气,我们获得的新表面就是我们所说的肥皂泡。肥皂泡是CMC表面。更确切地说,最小和CMC表面分别是肥皂膜和肥皂泡的数学理想化。肥皂膜和肥皂泡的平均曲率是与膜两侧的压力差成比例的量。对于肥皂膜/最小表面,压力差的值以及因此平均曲率的值为零,并且对于肥皂泡/CMC表面,压力差的值为非零常数。由于小气泡内的压力大于大气泡内的压力,因此小气泡的恒定平均曲率大于大气泡的恒定平均曲率。最小和CMC表面还具有相对于面积的关键最小化特性。在所有跨越给定边界的表面中,肥皂膜/最小表面是具有局部最小面积的表面;肥皂泡/CMC表面在体积约束下局部最小化面积。这个项目旨在研究极小曲面和CMC曲面的几个关键几何性质。粗略地说,我打算证明几个结果的CMC曲面嵌入在一个平坦的三维流形,包括面积估计时,表面是紧的有界亏格和周围的流形是紧的。我还计划研究嵌入在一般三维流形中的一系列极小或CMC曲面的极限。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TOPOLOGICAL TYPE OF LIMIT LAMINATIONS OF EMBEDDED MINIMAL DISKS
嵌入式最小盘极限叠片的拓扑类型
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:2.5
- 作者:Bernstein Jacob
- 通讯作者:Bernstein Jacob
Collapsing ancient solutions of mean curvature flow
- DOI:10.4310/jdg/1632506300
- 发表时间:2021-10
- 期刊:
- 影响因子:2.5
- 作者:T. Bourni;Mathew T. Langford;G. Tinaglia
- 通讯作者:T. Bourni;Mathew T. Langford;G. Tinaglia
Compact stable surfaces with constant mean curvature in Killing submersions
在杀戮淹没中具有恒定平均曲率的紧凑稳定表面
- DOI:10.1007/s10231-016-0619-y
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Lerma A
- 通讯作者:Lerma A
Dual quadratic differentials and entire minimal graphs in Heisenberg space
海森堡空间中的对偶二次微分和全极小图
- DOI:10.1007/s10455-018-9623-3
- 发表时间:2018
- 期刊:
- 影响因子:0.7
- 作者:Manzano J
- 通讯作者:Manzano J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giuseppe Tinaglia其他文献
Non-properly embedded H-planes in $${\mathbb H}^2\times {\mathbb R}$$
- DOI:
10.1007/s00208-017-1550-2 - 发表时间:
2017-05-25 - 期刊:
- 影响因子:1.400
- 作者:
Baris Coskunuzer;William H. Meeks III;Giuseppe Tinaglia - 通讯作者:
Giuseppe Tinaglia
Giuseppe Tinaglia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giuseppe Tinaglia', 18)}}的其他基金
The geometry of a surface embedded in a 3-manifold with constant mean curvature
嵌入具有恒定平均曲率的 3 流形中的表面的几何形状
- 批准号:
EP/L003163/1 - 财政年份:2013
- 资助金额:
$ 31.13万 - 项目类别:
Research Grant
The shape of nonzero constant mean curvature surfaces embedded in Euclidean space.
嵌入欧几里得空间中的非零恒定平均曲率曲面的形状。
- 批准号:
EP/I01294X/1 - 财政年份:2011
- 资助金额:
$ 31.13万 - 项目类别:
Research Grant
相似海外基金
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
- 批准号:
23K03081 - 财政年份:2023
- 资助金额:
$ 31.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
- 批准号:
2758306 - 财政年份:2022
- 资助金额:
$ 31.13万 - 项目类别:
Studentship
Embedded constant mean curvature hypersurfaces
嵌入式常平均曲率超曲面
- 批准号:
2417013 - 财政年份:2020
- 资助金额:
$ 31.13万 - 项目类别:
Studentship
Constant mean curvature surfaces of higher genus
高维常数平均曲率曲面
- 批准号:
251913428 - 财政年份:2014
- 资助金额:
$ 31.13万 - 项目类别:
Research Grants
Study on hypersurfaces of constant anisotropic mean curvature with singulalities
具有奇点的常各向异性平均曲率超曲面研究
- 批准号:
26610016 - 财政年份:2014
- 资助金额:
$ 31.13万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A new development of constant mean curvature surfaces
常平均曲率曲面的新发展
- 批准号:
25400062 - 财政年份:2013
- 资助金额:
$ 31.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1309236 - 财政年份:2013
- 资助金额:
$ 31.13万 - 项目类别:
Standard Grant
The geometry of a surface embedded in a 3-manifold with constant mean curvature
嵌入具有恒定平均曲率的 3 流形中的表面的几何形状
- 批准号:
EP/L003163/1 - 财政年份:2013
- 资助金额:
$ 31.13万 - 项目类别:
Research Grant
The shape of nonzero constant mean curvature surfaces embedded in Euclidean space.
嵌入欧几里得空间中的非零恒定平均曲率曲面的形状。
- 批准号:
EP/I01294X/1 - 财政年份:2011
- 资助金额:
$ 31.13万 - 项目类别:
Research Grant
Constant Mean Curvature Surfaces and Smoke Ring Flow
恒定平均曲率表面和烟环流
- 批准号:
179877155 - 财政年份:2010
- 资助金额:
$ 31.13万 - 项目类别:
Research Grants














{{item.name}}会员




