RINGS: Learning-Enabled Ground and Air Integrated Networks (GAINs)
RINGS:支持学习的地面和空中综合网络 (GAIN)
基本信息
- 批准号:2148212
- 负责人:
- 金额:$ 79.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The explosive growth of mobile data traffic is in part a response to the proliferation of mobile access services in recent years. However, not all mobile users are able to enjoy stable and reliable broadband connections due to limited network capacities and limited coverage areas. Therefore, in next generation (NextG) mobile broadband networks it is necessary to integrate terrestrial and non-terrestrial networks to democratize wireless access, by providing seamless wireless coverage and supporting heterogeneous service requirements. To meet this goal, this project will develop the fundamental research necessary to integrate and operate terrestrial and non-terrestrial networks, termed Ground and Air Integrated Networks (GAINs). The research project is highly interdisciplinary at the interface of machine learning and wireless networks, providing graduate and undergraduate students with the skills needed to thrive in either community, as well as to bridge them either in academia or in industry. Software and hardware testbeds will provide proof of concept demonstrations for academic, industry and government partners. The overarching objective of this research program is to develop fundamental enabling communication and computing technologies for resilient and intelligent Ground and Air Integrated Networks (GAINs) based on waveform design, real-time machine learning, resource scheduling, distributed computing and learning. This research program makes the sparse representation of the propagation environment visible to machine learning algorithms by designing signals and controlling networks in the delay-Doppler domain, rather than the time-frequency domain. The research program is streamlined into four interconnected research thrusts: 1) Waveform design to enable machine learning; 2) multi-agent reinforcement learning-enabled resilient scheduling for terrestrial networks; 3) distributed and resilient computing in GAINs; and 4) proof-of-concept development and system evaluation. A new suite of distributed and resilient machine learning algorithms that are communication-efficient and heterogeneity-aware will be tailored to information processing in GAINs at the speed of the next generation (NextG) networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动的数据业务的爆炸式增长部分地是对近年来移动的接入服务的激增的响应。然而,由于有限的网络容量和有限的覆盖区域,并非所有移动的用户都能够享受稳定可靠的宽带连接。因此,在下一代(NextG)移动的宽带网络中,有必要通过提供无缝无线覆盖和支持异构服务需求来集成地面和非地面网络以使无线接入大众化。为了实现这一目标,该项目将开展必要的基础研究,以整合和运营地面和非地面网络,称为地面和空中综合网络(GAIN)。该研究项目在机器学习和无线网络的界面上具有高度的跨学科性,为研究生和本科生提供在两个社区中蓬勃发展所需的技能,并将其与学术界或工业界联系起来。软件和硬件测试平台将为学术界、工业界和政府合作伙伴提供概念验证演示。该研究计划的总体目标是基于波形设计,实时机器学习,资源调度,分布式计算和学习,为弹性和智能的地面和空中集成网络(GAIN)开发基本的通信和计算技术。该研究计划通过在延迟-多普勒域而不是时频域中设计信号和控制网络,使传播环境的稀疏表示对机器学习算法可见。该研究计划被简化为四个相互关联的研究重点:1)波形设计,以实现机器学习; 2)多智能体强化学习支持的陆地网络弹性调度; 3)GAIN中的分布式和弹性计算;以及4)概念验证开发和系统评估。一套新的分布式和弹性的机器学习算法,是通信效率和异构性意识将被定制的信息处理在GAIN在下一代(NextG)网络的速度。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BEER: Fast O(1/T) Rate for Decentralized Nonconvex Optimization with Communication Compression
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Haoyu Zhao;Boyue Li;Zhize Li;Peter Richt'arik;Yuejie Chi
- 通讯作者:Haoyu Zhao;Boyue Li;Zhize Li;Peter Richt'arik;Yuejie Chi
Independent Natural Policy Gradient Methods for Potential Games: Finite-time Global Convergence with Entropy Regularization
- DOI:10.1109/cdc51059.2022.9993175
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Shicong Cen;Fan Chen;Yuejie Chi
- 通讯作者:Shicong Cen;Fan Chen;Yuejie Chi
SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
- DOI:10.48550/arxiv.2206.09888
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Zhize Li;Haoyu Zhao;Boyue Li;Yuejie Chi
- 通讯作者:Zhize Li;Haoyu Zhao;Boyue Li;Yuejie Chi
Escaping Saddle Points in Heterogeneous Federated Learning via Distributed SGD with Communication Compression
- DOI:10.48550/arxiv.2310.19059
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Sijin Chen;Zhize Li;Yuejie Chi
- 通讯作者:Sijin Chen;Zhize Li;Yuejie Chi
Asynchronous Gradient Play in Zero-Sum Multi-agent Games
- DOI:10.48550/arxiv.2211.08980
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Ruicheng Ao;Shicong Cen;Yuejie Chi
- 通讯作者:Ruicheng Ao;Shicong Cen;Yuejie Chi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lingjia Liu其他文献
Energy Efficient and Adaptive Analog IC Design for Delay-Based Reservoir Computing
用于基于延迟的储层计算的节能和自适应模拟 IC 设计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Fabiha Nowshin;Lingjia Liu;Y. Yi - 通讯作者:
Y. Yi
Cooperative Caching in HetNets With Mutual Information Accumulation
具有互信息积累的异构网络中的协作缓存
- DOI:
10.1109/lnet.2021.3072250 - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Junchao Ma;Bodong Shang;Lingjia Liu;Cheng Zhang;PIngzhi Fan - 通讯作者:
PIngzhi Fan
Channel coding over finite transport blocks in modern wireless systems
现代无线系统中有限传输块的信道编码
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Cenk Sahin;Lingjia Liu;E. Perrins - 通讯作者:
E. Perrins
Quantifying the process of lake encroachment from the perspective of satellite remote sensing
从卫星遥感的角度量化湖泊侵占过程
- DOI:
10.1016/j.ecolind.2025.113730 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.400
- 作者:
Wei Jiang;Qingke Wen;Shuo Liu;Lingjia Liu;Gan Luo;Shiai Cui;Weichao Sun;Denghua Yan - 通讯作者:
Denghua Yan
Pareto Deterministic Policy Gradients and Its Application in 5G Massive MIMO Networks
Pareto确定性策略梯度及其在5G Massive MIMO网络中的应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhou Zhou;Yan Xin;Hao Chen;C. Zhang;Lingjia Liu - 通讯作者:
Lingjia Liu
Lingjia Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lingjia Liu', 18)}}的其他基金
Collaborative Research: SWIFT: Intelligent Dynamic Spectrum Access (IDEA): An Efficient Learning Approach to Enhancing Spectrum Utilization and Coexistence
合作研究:SWIFT:智能动态频谱接入 (IDEA):增强频谱利用和共存的有效学习方法
- 批准号:
2128594 - 财政年份:2022
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Deep Neural Networks Meet Physical LayerCommunications -- Learning with Knowledge of Structure
合作研究:MLWiNS:深度神经网络满足物理层通信——利用结构知识进行学习
- 批准号:
2003059 - 财政年份:2020
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Enabling Spectrum and Energy-Efficient Dynamic Spectrum Access Wireless Networks using Neuromorphic Computing
SpecEES:协作研究:使用神经形态计算实现频谱和节能动态频谱接入无线网络
- 批准号:
1731928 - 财政年份:2017
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
Collaborative Research: Delay-Sensitive Hybrid Broadcast/Unicast Traffic over Heterogeneous Cellular Networks
合作研究:异构蜂窝网络上的延迟敏感混合广播/单播流量
- 批准号:
1802710 - 财政年份:2017
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
NeTS: Small: Spatial Spectrum Sensing-Based Device-to-Device (D2D) Networks
NeTS:小型:基于空间频谱感知的设备到设备 (D2D) 网络
- 批准号:
1811720 - 财政年份:2017
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Enabling Spectrum and Energy-Efficient Dynamic Spectrum Access Wireless Networks using Neuromorphic Computing
SpecEES:协作研究:使用神经形态计算实现频谱和节能动态频谱接入无线网络
- 批准号:
1811497 - 财政年份:2017
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
NeTS: Small: Spatial Spectrum Sensing-Based Device-to-Device (D2D) Networks
NeTS:小型:基于空间频谱感知的设备到设备 (D2D) 网络
- 批准号:
1718977 - 财政年份:2017
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
Collaborative Research: Delay-Sensitive Hybrid Broadcast/Unicast Traffic over Heterogeneous Cellular Networks
合作研究:异构蜂窝网络上的延迟敏感混合广播/单播流量
- 批准号:
1509514 - 财政年份:2015
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
Student Travel Support for the IEEE Globecom 2015
IEEE Globecom 2015 学生旅行支持
- 批准号:
1547774 - 财政年份:2015
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
CIF: Small: Fundamentals of Energy-Efficiency in Delay-SensitiveWireless Communications
CIF:小:延迟敏感无线通信中的能源效率基础
- 批准号:
1422241 - 财政年份:2014
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
相似国自然基金
磁性的机器学习研究: 以图神经网络为中心
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
耦合机理与深度学习的重庆市表层岩溶生态碳通量估算研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于人在回路学习的下肢外骨骼机器人个性化步态规划和自适应协同控制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
信息推送技术的深度网络融合与模糊学习优化研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多参数双能CT深度迁移学习整体刻画胰腺癌免疫微环境并预测预后
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
机器学习辅助射流撞击-负压脱氨反应器中氨/水相界面演变机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
深度学习驱动的茶皂素抗衰老活性筛选及作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于群体博弈与深度强化学习的USV-AUV异构系统协同控制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多粒度视角下面向不确定数据的高效知识学习方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于机器学习的钛合金真空电子束焊接质量预测与工艺调控
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
EU-Funded
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Continuing Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
- 批准号:
2336189 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Continuing Grant
Career: Learning-Enabled Medical Cyber-Physical Systems
职业:支持学习的医疗网络物理系统
- 批准号:
2339637 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant
EAGER: Private Blockchain-Enabled Federated Learning Framework for Distributed Manufacturing Networks
EAGER:支持私有区块链的分布式制造网络联合学习框架
- 批准号:
2420964 - 财政年份:2024
- 资助金额:
$ 79.4万 - 项目类别:
Standard Grant