NSFGEO-NERC: Understanding the consequences of changing phytoplankton elemental use efficiencies for global ocean biogeochemistry

NSFGEO-NERC:了解改变浮游植物元素利用效率对全球海洋生物地球化学的影响

基本信息

  • 批准号:
    2149837
  • 负责人:
  • 金额:
    $ 90.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by the National Science Foundation’s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (UKRI/NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own ivestigators and component of the work.Earth system computer models that simulate the global cycles of carbon and other elements are one of our most valuable tools to predict environmental change in the future ocean. However, existing modeling methods cannot realistically test how increasing ocean temperatures will affect the needs of marine micro-organisms for the limiting nutrients that usually control their growth, including nitrogen, phosphorus and iron. Because these limiting nutrients govern how much photosynthesis occurs in the ocean, they strongly influence the fate of carbon dioxide produced by human fossil-fuel burning. For this reason, determining how nutrient use by plankton will respond to greenhouse warming of the surface ocean is a priority for scientists and policy makers. This project supports a collaboration between two marine microbiologists in the United States and an Earth system modeler from the United Kingdom that is aiming to better understand how oceanic limiting nutrient cycles and the biological communities they support will react to global warming. The U.S. investigators are using laboratory culture experiments, field work in the coastal ocean, and existing collections of past open ocean chemistry and biology measurements to generate quantitative estimates of rising temperature effects on nutrient elemental use efficiencies (EUEs). An EUE is defined as the rate at which a marine microbe can take up carbon dioxide via photosynthesis, per unit of limiting nutrient in the cell. Preliminary results show that EUEs are highly sensitive to changing temperature, which in turn has far-reaching consequences for how ocean ecosystems function. The U.K. investigator is using these experimentally-determined values to build a new Earth system model that is centered on how warmer conditions will affect EUEs for important groups of marine micro-organisms. This novel approach has the potential to yield much better estimates of the ways that ocean carbon uptake and nutrient cycling will be altered as the ocean continues to warm in the future. Broader Impacts include breaking new scientific ground in oceanography and climate science through improved Earth system models, providing educational opportunities for graduate students, undergraduate researchers, K-12 students, and postdoctoral investigators, and strengthening collaborative ties between the marine science communities of the U.S. and the U.K.Quantitative relationships between phytoplankton nutrient limitation, primary production and globally-rising sea surface temperatures are still not well understood, largely due to a lack of mechanistic experimental data. This is problematic for Earth system modelers who are trying to project future oceanic productivity levels that underpin predicted changes in ocean ecosystems, information that is urgently needed to inform environmental policy makers. This project addresses this knowledge gap in a closely coordinated, collaborative project between two U.S. marine microbiologists and a biogeochemical modeler from the U.K. The international team of interdisciplinary researchers are applying the emergent concept of Elemental Use Efficiencies (EUEs) to integrate flexible thermal and resource limitation responses into a new generation of Earth system models. EUEs are defined as the amount of carbon fixed per unit time, normalized to the amount of a limiting resource in a phytoplankton cell, as represented by the cellular nutrient quota. Preliminary work suggests that EUEs can be very sensitive to future ocean warning, with major downstream consequences for nutrient-limited marine plankton assemblages and thus also for ocean carbon and nutrient biogeochemistry. The investigators are using high-throughput thermal block methodology to measure EUEs for the limiting nutrients nitrogen, phosphorus and iron in a diverse set of four different functional groups of laboratory phytoplankton isolates across their entire thermal ranges. EUEs obtained for these three key limiting nutrient resources as a function of temperature and degree of nutrient stress are being applied in an iterative manner to inform a novel EUE-centric version of the established NEMO-PISCES ocean model. Field EUE data from coastal and open ocean regimes are being collected for comparison to and ground-truthing of both the laboratory culture results, and the modeling output. This project will advance the discipline of ocean global change biology by providing unique new insights into how biogeochemically-critical marine microbial functional groups may respond to simultaneous shifts in temperature and limiting nutrient resource availability both today, and in the future changing ocean.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由国家科学基金会地球科学理事会(NSF/GEO)和联合王国国家环境研究理事会(UKRI/NERC)通过NSF/GEO-NERC牵头机构协议共同资助。该协议允许美国/英国提交一份联合提案,并由研究者拥有最大预算比例的机构进行同行评审。成功联合确定奖项后,每个机构都会为预算比例以及与其自己的调查人员和工作部分相关的调查人员提供资金。模拟碳和其他元素全球循环的地球系统计算机模型是我们最有价值的工具之一预测未来海洋环境变化。 然而,现有的建模方法无法真实地测试海洋温度的上升将如何影响海洋微生物对通常控制其生长的有限营养素的需求,包括氮,磷和铁。 由于这些限制性的营养物质决定了海洋中光合作用的发生,它们强烈影响着人类化石燃料燃烧产生的二氧化碳的命运。因此,确定浮游生物对营养物质的使用将如何应对海洋表面的温室效应,是科学家和政策制定者的首要任务。 该项目支持美国的两名海洋微生物学家和联合王国的一名地球系统建模师之间的合作,旨在更好地了解海洋限制性营养循环及其所支持的生物群落将如何应对全球变暖。 美国研究人员正在使用实验室培养实验,沿海海洋的实地工作以及过去开放海洋化学和生物测量的现有集合,以定量估计温度升高对营养元素利用效率(EUE)的影响。 埃厄的定义是海洋微生物通过光合作用吸收二氧化碳的速率,每单位细胞中的限制性营养素。初步结果表明,EUE对温度变化高度敏感,这反过来又对海洋生态系统的功能产生深远的影响。英国研究人员正在使用这些实验确定的值来建立一个新的地球系统模型,该模型的中心是温暖的条件将如何影响重要的海洋微生物群体的EUE。这种新的方法有可能产生更好的估计方式,海洋碳吸收和营养循环将改变海洋继续变暖的未来。 更广泛的影响包括通过改进地球系统模型在海洋学和气候科学方面开辟新的科学领域,为研究生,本科生研究人员,K-12学生和博士后研究人员提供教育机会,并加强美国海洋科学界之间的合作关系。初级生产和全球海洋表面温度上升仍然没有得到很好的理解,主要是由于缺乏机械实验数据。这对地球系统建模者来说是个问题,他们试图预测未来海洋生产力水平,以支持海洋生态系统的预测变化,这些信息是环境政策制定者迫切需要的。该项目在两名美国海洋微生物学家和一名来自英国的海洋地球化学建模者之间密切协调的合作项目中解决了这一知识差距。 跨学科研究人员的国际团队正在应用元素使用效应(EUE)的新兴概念,将灵活的热和资源限制响应整合到新一代地球系统模型中。EUE被定义为每单位时间固定的碳量,标准化为浮游植物细胞中限制资源的量,如细胞营养配额所示。 初步工作表明,EUE可以是非常敏感的未来海洋警报,营养有限的海洋浮游生物组合,从而也为海洋碳和营养盐的海洋地球化学的重大下游后果。研究人员正在使用高通量热块方法来测量EUE的限制营养素氮,磷和铁在一组不同的四个不同的功能组的实验室浮游植物分离物在其整个热范围。这三个关键的限制性营养资源作为温度和营养胁迫程度的函数获得的EUE正在以迭代的方式应用,以通知已建立的NEMO-PISCES海洋模型的新的以EUE为中心的版本。正在收集沿海和开阔海域的实地埃厄数据,以便与实验室培养结果和模拟输出进行比较和地面实况。该项目将推进海洋全球变化生物学的学科,提供独特的新见解,了解生态地球化学关键的海洋微生物功能群如何应对温度的同时变化和限制营养资源的可用性,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular mechanisms underlying iron and phosphorus co-limitation responses in the nitrogen-fixing cyanobacterium Crocosphaera
  • DOI:
    10.1038/s41396-022-01307-7
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nina Yang;Yu-An Lin;C. Merkel;Michelle A. DeMers;Ping-Ping Qu-Ping;E. Webb;Feixue Fu;D. Hutchins
  • 通讯作者:
    Nina Yang;Yu-An Lin;C. Merkel;Michelle A. DeMers;Ping-Ping Qu-Ping;E. Webb;Feixue Fu;D. Hutchins
Sinking diatoms trap silicon in deep seawater of acidified oceans
下沉的硅藻在酸化海洋的深海水中捕获硅
  • DOI:
    10.1038/d41586-022-01365-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Hutchins, David A.
  • 通讯作者:
    Hutchins, David A.
Proteomics analysis reveals differential acclimation of coastal and oceanic Synechococcus to climate warming and iron limitation
  • DOI:
    10.3389/fmicb.2024.1323499
  • 发表时间:
    2024-02-20
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Schiksnis,Cara;Xu,Min;Hutchins,David A.
  • 通讯作者:
    Hutchins,David A.
Dual thermal ecotypes coexist within a nearly genetically identical population of the unicellular marine cyanobacterium Synechococcus
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hutchins其他文献

Stakeholders’ Perspectives on Medication Adherence Enhancing Interventions
利益相关者对提高药物依从性干预措施的看法
  • DOI:
    10.1016/j.jval.2025.01.022
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Bijan J. Borah;Lisa J. Pieretti;Alan J. Balch;Rajvi J. Wani;Christopher J. Daly;Dalia Dawoud;David Hutchins;Mickaël Hiligsmann;Andrew M. Peterson;Tamas Agh
  • 通讯作者:
    Tamas Agh
Physically constrained two-stage residual network for defect sizing using capacitive imaging technique
用于使用电容成像技术进行缺陷尺寸测量的物理受限两级残差网络
  • DOI:
    10.1016/j.ymssp.2025.113018
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Guojun Fan;Xiaokang Yin;Mingrui Zhao;Martin Mwelango;Jihao Shi;David Hutchins;Xin’an Yuan;Wei Li
  • 通讯作者:
    Wei Li
State Diabetes Prevention and Control Program Participation in the Health Disparities Collaborative: Evaluating the First 5 Years
州糖尿病预防和控制计划参与健康差异协作:评估前 5 年
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    B. Larsen;M. Martin;David Hutchins;Ana Alfaro;Laura Shea
  • 通讯作者:
    Laura Shea
Plastic plankton prosper
塑料浮游生物繁荣
  • DOI:
    10.1038/nclimate1839
  • 发表时间:
    2013-02-26
  • 期刊:
  • 影响因子:
    27.100
  • 作者:
    David Hutchins
  • 通讯作者:
    David Hutchins
Correction to: A pilot study that provides evidence of epigenetic changes among mother–child pairs living proximal to mining in the US
  • DOI:
    10.1007/s10653-022-01248-2
  • 发表时间:
    2022-03-17
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Guoshuai Cai;Xuanxuan Yu;David Hutchins;Suzanne McDermott
  • 通讯作者:
    Suzanne McDermott

David Hutchins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Hutchins', 18)}}的其他基金

MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
  • 批准号:
    EP/Y034635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
Collaborative Research: Evolutionary, biochemical and biogeochemical responses of marine cyanobacteria to warming and iron limitation interactions
合作研究:海洋蓝藻对变暖和铁限制相互作用的进化、生化和生物地球化学反应
  • 批准号:
    1851222
  • 财政年份:
    2019
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Iron and phosphorus balanced limitation of nitrogen fixation in the oligotrophic ocean
合作研究:贫营养海洋固氮的铁磷平衡限制
  • 批准号:
    1657757
  • 财政年份:
    2017
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
Dimensions: Collaborative Research: Genetic, functional and phylogenetic diversity determines marine phytoplankton community responses to changing temperature and nutrients
维度:合作研究:遗传、功能和系统发育多样性决定海洋浮游植物群落对温度和营养物质变化的反应
  • 批准号:
    1638804
  • 财政年份:
    2016
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
High resolution biomedical imaging using ultrasonic metamaterials
使用超声波超材料的高分辨率生物医学成像
  • 批准号:
    EP/N034163/1
  • 财政年份:
    2016
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
2014 Ocean Global Change Biology Gordon Research Conference
2014年海洋全球变化生物学戈登研究会议
  • 批准号:
    1422113
  • 财政年份:
    2014
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
SUB-MHZ ULTRASONIC INSPECTION
亚兆赫超声波检测
  • 批准号:
    EP/K031201/1
  • 财政年份:
    2013
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
Collaborative research: Adaptation of key N2-fixing cyanobacteria to changing CO2
合作研究:关键固氮蓝细菌对二氧化碳变化的适应
  • 批准号:
    1260490
  • 财政年份:
    2013
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
Sound bullets for enhanced biomedical ultrasound systems
用于增强型生物医学超声系统的声子弹
  • 批准号:
    EP/K030159/1
  • 财政年份:
    2013
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
EAGER: Gene expression patterns in high C02-adapted Trichodesmium
EAGER:高CO2适应的Trichodesmium中的基因表达模式
  • 批准号:
    1143760
  • 财政年份:
    2011
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant

相似海外基金

NSFGEO-NERC: The Cracking of a Craton: Understanding Volatile Release during Continental Breakup
NSFGEO-NERC:克拉通的破裂:了解大陆破裂期间的挥发物释放
  • 批准号:
    NE/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Understanding the Response to Ocean Melting for Two of East Antarctica's Most Vulnerable Glaciers: Totten, and Denman
NSFGEO-NERC:了解南极洲东部最脆弱的两个冰川:托滕冰川和登曼冰川对海洋融化的反应
  • 批准号:
    NE/Y005627/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
  • 批准号:
    2235052
  • 财政年份:
    2023
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Understanding the Response to Ocean Melting for Two of East Antarctica's Most Vulnerable Glaciers: Totten and Denman
NSFGEO-NERC:了解南极洲东部两个最脆弱的冰川:托滕冰川和登曼冰川对海洋融化的反应
  • 批准号:
    2231230
  • 财政年份:
    2023
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
  • 批准号:
    2344690
  • 财政年份:
    2023
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
  • 批准号:
    2235051
  • 财政年份:
    2023
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    NE/V013343/1
  • 财政年份:
    2021
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Understanding Trans-Hemispheric Modes of Climate Variability: A Novel Tree-Ring Data Transect spanning the Himalaya to the Southern Ocean
NSFGEO-NERC:了解气候变化的跨半球模式:跨越喜马拉雅山到南大洋的新型树轮数据样带
  • 批准号:
    NE/W007223/1
  • 财政年份:
    2021
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    2023434
  • 财政年份:
    2021
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    2023442
  • 财政年份:
    2021
  • 资助金额:
    $ 90.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了