III: Small: Rapid screening of interacting ligands and proteins
III:小:快速筛选相互作用的配体和蛋白质
基本信息
- 批准号:1319551
- 负责人:
- 金额:$ 49.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational infrastructure for efficient and accurate searching of bio-molecules from various databases is foundation of any modern biology, biochemistry, pharmacology, and biotechnology. The goal of this project is to develop computational methods and databases that allow fast, real-time screening of various types of three dimensional (3D) structural data of proteins and their interacting molecules in a seamless fashion. The structure data to be searched include 3D protein structures and protein complexes, predicted protein structures, low-resolution protein complexes solved by cryo-electron microscopy, small chemical ligand molecules, and drug molecules. The project employs a mathematical representation of biomolecules that can quickly compare and search biomolecules that have similar global and local surface shape and properties with a query molecule. The project will further expand the applicability of the molecule representation for searching interacting molecules by identifying complementarity of shapes and surface properties. The methods to be developed in the project allow biologists to quickly identify potentially interacting proteins to a query protein, which will help generating testable hypothesis of molecular mechanisms of diseases through building molecular networks. Moreover, the methods will also enable quick searching of ligand molecules and potential drug molecules that fit to a target protein.Biology has entered the informatics era, when combining different types of big omics data are routinely required to reach a systems-level understanding of biological function of molecules and cells. In order to effectively glean useful structural data for biological studies, there is a strong need for computational methods that can quickly and seamlessly search for different types of structural data. Establishing efficient methods for searching biomolecular shape and physicochemical properties is essential for capitalizing on the large number of efforts directed towards determining molecular and cellular structures by structural genomics and other projects. The project will develop computational methods and databases to screen various types of protein structures and their interacting molecules seamlessly and quickly. Using the molecular representation proposed in the project, global and local shapes and surface properties (electrostatic potential, hydrophobicity) of proteins and ligand molecules can be compared ery fast. In contrast to conventional 3D structure search methods for biomolecules that take hours or even more than a day to finish a database search, the methods to be developed will allow real-time searches against large databases. Thus, structural analysis will become as convenient as sequence database searches for biology researchers. The 3D molecule search methods will be applied to identify interacting molecules for a query protein, ligand molecules that would bind to a pocket region of the query protein as well as interacting proteins. Knowing molecular interactions is critical for understanding functions of proteins. The key innovations include 1) finding interacting molecules to proteins, i.e. pocket-ligand interactions and protein-protein interactions; 2) local surface comparisons for functional annotations; Developed methods will be implemented into 3D-Surfer, a one-stop website for biomolecular shape retrieval.The proposed approach can be applied for other types of rapid shape and property comparisons, such as 2D and 3D medical images, microscope images, geographical landscapes, and face recognition. Graduate and undergraduate students in biological sciences and computer science will be trained in cross-listed courses among several departments. Several existing programs at Purdue for recruiting minority students and undergraduate students will contribute to broad participation in the project. Overall the proposed project leverages Purdue University?s efforts in interdisciplinary computational life science and engineering.
用于从各种数据库中高效准确地搜索生物分子的计算基础设施是任何现代生物学、生物化学、药理学和生物技术的基础。该项目的目标是开发计算方法和数据库,以无缝方式快速,实时筛选蛋白质及其相互作用分子的各种类型的三维(3D)结构数据。要搜索的结构数据包括3D蛋白质结构和蛋白质复合物、预测的蛋白质结构、通过冷冻电子显微镜解决的低分辨率蛋白质复合物、小化学配体分子和药物分子。该项目采用生物分子的数学表示,可以快速比较和搜索具有相似的全局和局部表面形状和属性的生物分子。该项目将通过识别形状和表面性质的互补性来进一步扩展分子表示在搜索相互作用分子方面的适用性。该项目开发的方法使生物学家能够快速识别与查询蛋白质潜在相互作用的蛋白质,这将有助于通过构建分子网络来产生疾病分子机制的可验证假设。此外,该方法还可以快速搜索与靶蛋白相匹配的配体分子和潜在药物分子。生物学已经进入信息时代,需要将不同类型的大组学数据结合起来,以达到对分子和细胞生物功能的系统水平理解。为了有效地收集有用的结构数据用于生物学研究,强烈需要能够快速且无缝地搜索不同类型的结构数据的计算方法。建立有效的方法来寻找生物分子的形状和物理化学性质是必不可少的资本化的大量努力,直接确定分子和细胞结构的结构基因组学和其他项目。该项目将开发计算方法和数据库,以无缝和快速地筛选各种类型的蛋白质结构及其相互作用的分子。使用该项目中提出的分子表示法,可以非常快速地比较蛋白质和配体分子的全局和局部形状以及表面性质(静电势,疏水性)。与需要数小时甚至一天以上才能完成数据库搜索的传统生物分子3D结构搜索方法相比,要开发的方法将允许对大型数据库进行实时搜索。因此,对于生物学研究人员来说,结构分析将变得像序列数据库搜索一样方便。3D分子搜索方法将用于鉴定查询蛋白的相互作用分子、将结合到查询蛋白的口袋区域的配体分子以及相互作用蛋白。了解分子间的相互作用对于理解蛋白质的功能至关重要。主要创新点包括:1)寻找与蛋白质相互作用的分子,即口袋-配体相互作用和蛋白质-蛋白质相互作用; 2)局部表面比较功能注释;所开发的方法将被实施到3D-Surfer,一个一站式的生物分子形状检索网站。所提出的方法可以应用于其他类型的快速形状和属性比较,如2D和3D医学图像,显微镜图像、地理景观和人脸识别。生物科学和计算机科学的研究生和本科生将在几个部门的交叉课程中接受培训。普渡大学现有的几个招收少数民族学生和本科生的项目将有助于广泛参与该项目。总体而言,拟议的项目利用普渡大学?在跨学科的计算生命科学和工程的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daisuke Kihara其他文献
NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation
NuFold:具有灵活核碱基中心表示的 RNA 三级结构预测的端到端方法
- DOI:
10.1038/s41467-025-56261-7 - 发表时间:
2025-01-21 - 期刊:
- 影响因子:15.700
- 作者:
Yuki Kagaya;Zicong Zhang;Nabil Ibtehaz;Xiao Wang;Tsukasa Nakamura;Pranav Deep Punuru;Daisuke Kihara - 通讯作者:
Daisuke Kihara
Local surface shape-based protein function prediction using Zernike descriptors
- DOI:
10.1016/j.bpj.2008.12.3435 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Daisuke Kihara;Lee Sael;Rayan Chikhi - 通讯作者:
Rayan Chikhi
Effect of phosphorylation barcodes on arrestin binding to a chemokine receptor
磷酸化条形码对 arrestin 与趋化因子受体结合的影响
- DOI:
10.1038/s41586-025-09024-9 - 发表时间:
2025-05-21 - 期刊:
- 影响因子:48.500
- 作者:
Qiuyan Chen;Christopher T. Schafer;Somnath Mukherjee;Kai Wang;Martin Gustavsson;James R. Fuller;Katelyn Tepper;Thomas D. Lamme;Yasmin Aydin;Parth Agrawal;Genki Terashi;Xin-Qiu Yao;Daisuke Kihara;Anthony A. Kossiakoff;Tracy M. Handel;John J. G. Tesmer - 通讯作者:
John J. G. Tesmer
Improved De Novo Main-Chain Tracing Method Mainmast for Multi-Chain Modeling, Local Refinement, and Graphical User Interface
- DOI:
10.1016/j.bpj.2018.11.3094 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Genki Terashi;Yuhong Zha;Daisuke Kihara - 通讯作者:
Daisuke Kihara
De Novo Computational Protein Tertiary Structure Modeling Pipeline for Cryo-EM Maps of Intermediate Resolution
- DOI:
10.1016/j.bpj.2019.11.1657 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Daisuke Kihara;Genki Terashi;Sai Raghavendra Maddhuri Venkata Subramaniya - 通讯作者:
Sai Raghavendra Maddhuri Venkata Subramaniya
Daisuke Kihara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daisuke Kihara', 18)}}的其他基金
Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
- 批准号:
2151678 - 财政年份:2022
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
- 批准号:
2211598 - 财政年份:2022
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions
合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模
- 批准号:
2146026 - 财政年份:2022
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
IIBR Informatics: Development of Multimodal approaches for protein function prediction
IIBR 信息学:蛋白质功能预测多模式方法的开发
- 批准号:
2003635 - 财政年份:2020
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Collaborative Research: RoL: Revealing a new mechanism of action for eukaryotic transcriptional activation domains
合作研究:RoL:揭示真核转录激活域的新作用机制
- 批准号:
1925643 - 财政年份:2019
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Collaborative Research: Efficient mathematical and computational framework for biological 3D image data retrieval
协作研究:生物 3D 图像数据检索的高效数学和计算框架
- 批准号:
1614777 - 财政年份:2016
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
ABI Innovation: Protein Functional Sites Identification Using Sequence Variation
ABI Innovation:利用序列变异识别蛋白质功能位点
- 批准号:
1262189 - 财政年份:2013
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
III: Small: Quality Assessment of Computational Protein Models
III:小:计算蛋白质模型的质量评估
- 批准号:
0915801 - 财政年份:2009
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Template-Based Protein Structure Prediction Beyond Sequence Homology
超越序列同源性的基于模板的蛋白质结构预测
- 批准号:
0850009 - 财政年份:2009
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
FET: Small: Rapid and Rational Drug-Cocktail Formulation and Discovery Via Electronic Circuits
FET:小型:通过电子电路快速合理地配制和发现药物混合物
- 批准号:
2240264 - 财政年份:2023
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Resilience and Recovery among Ukrainian Small Business Owners
合作研究:RAPID:乌克兰小企业主的弹性和恢复
- 批准号:
2227630 - 财政年份:2022
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
SaTC: TTP: Small: Experimental Platform for Rapid Prototyping and Deployment of Secure Multi-Party Protocols
SaTC:TTP:小型:安全多方协议快速原型设计和部署的实验平台
- 批准号:
2213057 - 财政年份:2022
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Resilience and Recovery among Ukrainian Small Business Owners
合作研究:RAPID:乌克兰小企业主的弹性和恢复
- 批准号:
2227629 - 财政年份:2022
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Rapid translation of small molecule GPR65 inhibitors for cancer immunotherapy
小分子 GPR65 抑制剂快速转化用于癌症免疫治疗
- 批准号:
10024690 - 财政年份:2021
- 资助金额:
$ 49.25万 - 项目类别:
Collaborative R&D
Rapid isolation of high-affinity DNA aptamers for small-molecule targets via nuclease-assisted SELEX
通过核酸酶辅助 SELEX 快速分离小分子靶标的高亲和力 DNA 适体
- 批准号:
2135005 - 财政年份:2021
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Improving flood risk management in small, rapid response catchments under climate change
改善气候变化下小型快速反应流域的洪水风险管理
- 批准号:
2603723 - 财政年份:2021
- 资助金额:
$ 49.25万 - 项目类别:
Studentship
RAPID: Enhancing US manufacturing of small molecule active pharmaceutical ingredients (APIs) using Authoritative Systems Knowledge (ASK) - (ASK4APIs)
RAPID:利用权威系统知识 (ASK) 加强美国小分子活性药物成分 (API) 的制造 - (ASK4APIs)
- 批准号:
2029919 - 财政年份:2020
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
Discovery of small molecules targeting SARS-CoV-2 frameshifting using a rapid yeast platform
使用快速酵母平台发现针对 SARS-CoV-2 移码的小分子
- 批准号:
442926 - 财政年份:2020
- 资助金额:
$ 49.25万 - 项目类别:
Operating Grants
Rapid translation of small molecule GPR65 inhibitors for cancer immunotherapy
小分子 GPR65 抑制剂快速转化用于癌症免疫治疗
- 批准号:
47636 - 财政年份:2020
- 资助金额:
$ 49.25万 - 项目类别:
Study