SHF: SMALL: End-to-End Global Routing with Reinforcement Learning in VLSI Systems
SHF:小型:VLSI 系统中采用强化学习的端到端全局路由
基本信息
- 批准号:2151854
- 负责人:
- 金额:$ 49.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Integrated circuits have transformed every sector of modern life with a broad range of computing devices – from personal computers to specialized accelerators and high-performance computing clusters. With the ever-high design complexity of modern integrated systems, traditional electronic design-automation algorithms cannot guarantee convergence of the design process, fail to predict output quality, and often settle for lower performance. Considering billions of dollars spent on developing a system in a new technology node, the loss of profit due to not having the system ready on time for release to market or losing the performance benefits of the new technology node cannot be mitigated. This project investigates a fundamentally new approach for circuit global routing -- a critical automated design step and a primary bottleneck in the design process. The primary objective is to route circuits with deep-learning models in a highly parallelizable manner, shortening the turnaround design time by orders of magnitude. More broadly, the results from this project are expected to shift existing physical-design paradigms toward a learning-driven predictable process that can exploit the advantages of the underlying technology to their full potential in a timely manner. Executed by a federally designated Hispanic Serving Institution, this award presents a unique opportunity to engage with a diverse minority population and creates training opportunities in circuit design, electronic design automation, and machine learning. As such, the project is anticipated to have a strong economic and societal impact.Designed via a pile of intractable optimizations to tackle the NP-hard problem of global routing, traditional routers are characterized by convergence issues and unpredictable routing quality. While there is a general agreement on potential benefits of realizing routing with machine-learning (ML) models, not a single end-to-end learning framework has been demonstrated to route unseen high-resolution practical integrated circuits.To address this challenge, global routing will be investigated as an ML problem in which nets are viewed as the missing parts of a routing solution and reconstructed, in a preferred order, with imaging ML models while considering the overall minimum wirelength objective and congestion constraints. The insights from this study will be exploited to develop a reinforcement-learning framework comprising: (i) graph neural network for encoding routing attributes, (ii) net ordering policy for determining the next net to be routed, and (iii) variational autoencoder to route individual unseen nets. The resulting design methodology and ML models, architectures, and algorithms will be integrated in an end-to-end ML router and demonstrated on existing benchmarks and commercial products provided by industrial collaborators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集成电路已经通过广泛的计算设备改变了现代生活的方方面面——从个人电脑到专门的加速器和高性能计算集群。随着现代集成系统设计复杂性的不断提高,传统的电子设计自动化算法不能保证设计过程的收敛性,不能预测输出质量,而且往往满足于较低的性能。考虑到在一个新技术节点上开发一个系统花费了数十亿美元,由于系统没有及时准备好推向市场或失去新技术节点的性能优势而导致的利润损失是无法减轻的。该项目研究了一种全新的电路全局路由方法,这是一个关键的自动化设计步骤,也是设计过程中的主要瓶颈。主要目标是以高度并行的方式使用深度学习模型路由电路,以数量级缩短周转设计时间。更广泛地说,这个项目的结果有望将现有的物理设计范式转变为学习驱动的可预测过程,可以及时利用底层技术的优势,充分发挥其潜力。该奖项由联邦指定的西班牙裔服务机构执行,提供了一个独特的机会,与不同的少数民族人口接触,并创造了电路设计、电子设计自动化和机器学习方面的培训机会。因此,该项目预计将产生强大的经济和社会影响。传统路由器是通过一堆棘手的优化设计来解决全局路由的np困难问题,其特点是收敛问题和不可预测的路由质量。虽然人们普遍认为用机器学习(ML)模型实现路由的潜在好处,但还没有一个单一的端到端学习框架被证明可以路由看不见的高分辨率实用集成电路。为了应对这一挑战,将全局路由作为一个ML问题进行研究,其中网络被视为路由解决方案的缺失部分,并在考虑总体最小无线目标和拥塞约束的同时,使用成像ML模型按首选顺序重建。本研究的见解将被用于开发一个强化学习框架,该框架包括:(i)用于编码路由属性的图神经网络,(ii)用于确定下一个要路由的网络的网络排序策略,以及(iii)用于路由单个看不见的网络的变分自编码器。最终的设计方法和机器学习模型、架构和算法将集成到端到端机器学习路由器中,并在工业合作者提供的现有基准和商业产品上进行演示。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiterminal Pathfinding in Practical VLSI Systems with Deep Neural Networks
- DOI:10.1145/3564930
- 发表时间:2022-01
- 期刊:
- 影响因子:1.4
- 作者:Dmitry Utyamishev;Inna Partin-Vaisband
- 通讯作者:Dmitry Utyamishev;Inna Partin-Vaisband
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inna Partin-Vaisband其他文献
Inna Partin-Vaisband的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inna Partin-Vaisband', 18)}}的其他基金
CAREER: Unified Reference-Free Early Detection of Hardware Trojans via Knowledge Graph Embeddings
职业:通过知识图嵌入对硬件木马进行统一的无参考早期检测
- 批准号:
2238976 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
Collaborative Research: 2D Ambipolar Machine Learning & Logical Computing Systems
合作研究:2D 双极机器学习
- 批准号:
2154385 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
- 批准号:
2327136 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CyberTraining: Implementation: Small: COMPrehensive Learning for end-users to Effectively utilize CyberinfraStructure (COMPLECS)
网络培训:实施:小型:最终用户全面学习以有效利用网络基础设施 (COMPLECS)
- 批准号:
2320934 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
- 批准号:
2327137 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
FET: Small: LightRidge: End-to-end Agile Design for Diffractive Optical Neural Networks
FET:小型:LightRidge:衍射光神经网络的端到端敏捷设计
- 批准号:
2321404 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Can immunotherapy treatment for patients with non-small cell lung cancer improve end-of-life outcome
非小细胞肺癌患者的免疫疗法能否改善临终结局
- 批准号:
486996 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Miscellaneous Programs
SaTC: CORE: Small: Corporeal Cybersecurity: Improving End-User Security and Privacy with Physicalized Computing Interface
SaTC:核心:小型:实体网络安全:通过物理化计算接口提高最终用户安全和隐私
- 批准号:
2316294 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant