CRII: SHF: Assessing and Profiling Continuous Integration for Machine Learning Applications

CRII:SHF:评估和分析机器学习应用程序的持续集成

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Continuous integration (CI) is a widely adopted software development practice for faster code change integration and maintenance of software quality attributes. At the same time, machine learning (ML), including deep learning (DL), is quickly gaining popularity for solving complex problems. Like typical software, ML applications also require many iterations to improve software quality. However, iterative ML application-development processes face higher-level difficulties in adopting CI in three aspects. First, developers lack systematic understanding for managing ML data, models and code in the CI workflow. For ML-based systems, the process to define the CI workflow is currently much more experimental in nature. Second, existing CI systems are lacking in the handling of ML-centric challenges such as defining evaluation conditions of ML models, formulating complicated build steps, long build and integration time, etc. For ML applications, the build process is much more complicated due to the complex dependency of data, model, code, etc. Third, data scientists lack the technical support to adopt and maintain CI configurations due to complex interconnections among data, model, code, etc. and the changing nature of the ML applications. For data scientists with limited or no knowledge of CI, it becomes increasingly difficult to adopt CI for ML applications, and even if adopted it requires too much manual effort. The project will make progress in acquiring knowledge on the feasibility and effectiveness of the current adoption of CI for ML applications. This will assist in understanding the workflow of CI for ML applications and identifying improvement scopes. Moreover, the project will develop a novel CI profiling framework to generate a dependency graph among heterogeneous artifacts (e.g., data, model, code, etc.) of ML applications. The knowledge and framework will serve as the basis for future research on automatic generation and maintenance of ML CI configuration, mining software repositories, build optimization and monitoring systems for ML CI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公共法律117-2)。持续集成(CI)是一种被广泛采用的软件开发实践,用于更快地更改代码、集成和维护软件质量属性。与此同时,机器学习(ML),包括深度学习(DL),在解决复杂问题方面正在迅速普及。与典型的软件一样,ML应用程序也需要多次迭代来提高软件质量。然而,迭代的ML应用程序开发过程在三个方面面临采用CI的更高级别的困难。首先,开发人员对在CI工作流程中管理ML数据、模型和代码缺乏系统的了解。对于基于ML的系统,定义CI工作流的过程目前更多的是试验性的。第二,现有的CI系统缺乏处理以ML为中心的挑战,如定义ML模型的评估条件,制定复杂的构建步骤,构建和集成时间较长等。对于ML应用,由于数据、模型、代码等的复杂依赖,构建过程更加复杂。第三,由于数据、模型、代码等之间的复杂互联和ML应用性质的变化,数据科学家缺乏采用和维护CI配置的技术支持。对于对CI了解有限或不了解CI的数据科学家来说,为ML应用程序采用CI变得越来越困难,即使采用,也需要太多的手动工作。该项目将在获取关于目前采用信息技术应用于多语言应用的可行性和有效性方面取得进展。这将有助于理解用于ML应用程序的CI的工作流程,并确定改进范围。此外,该项目将开发一个新的CI概要分析框架,以在不同的构件(例如,数据、模型、代码等)之间生成依赖图。ML应用程序的一部分。该知识和框架将作为未来自动生成和维护ML CI配置、挖掘软件库、为ML CI构建优化和监控系统的研究的基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Empirical Study of High Performance Computing (HPC) Performance Bugs
UniLoc: Unified Fault Localization of Continuous Integration Failures
Virtual Reality (VR) Automated Testing in the Wild: A Case Study on Unity-Based VR Applications
虚拟现实 (VR) 野外自动测试:基于 Unity 的 VR 应用案例研究
  • DOI:
    10.1145/3597926.3598134
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rzig, Dhia Elhaq;Iqbal, Nafees;Attisano, Isabella;Qin, Xue;Hassan, Foyzul
  • 通讯作者:
    Hassan, Foyzul
An empirical study on ML DevOps adoption trends, efforts, and benefits analysis
  • DOI:
    10.1016/j.infsof.2022.107037
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Rzig;Foyzul Hassan;Marouane Kessentini
  • 通讯作者:
    D. Rzig;Foyzul Hassan;Marouane Kessentini
Characterizing the Usage of CI Tools in ML Projects
表征 ML 项目中 CI 工具的使用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Foyzul Hassan其他文献

Mining Readme Files to Support Automatic Building of Java Projects in Software Repositories
挖掘自述文件以支持在软件存储库中自动构建 Java 项目
Effect of Articulatory Trajectories on Phoneme Recognition Performance
发音轨迹对音素识别性能的影响
Tackling Build Failures in Continuous Integration
Local Feature or Mel Frequency Cepstral Coefficients - Which One Is Better for MLN-Based Bangla Speech Recognition?
局部特征或梅尔频率倒谱系数 - 哪一个更适合基于 MLN 的孟加拉语语音识别?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Foyzul Hassan;Mohammed Rokibul Alam Kotwal;Md. Mostafizur Rahman;M. Nasiruddin;Md. Abdul Latif;M. N. Huda
  • 通讯作者:
    M. N. Huda
Characterizing Virtual Reality Software Testing
虚拟现实软件测试的特征
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Rzig;Nafees Iqbal;Isabella Attisano;Xue Qin;Foyzul Hassan
  • 通讯作者:
    Foyzul Hassan

Foyzul Hassan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
SHF: SMALL: A New Semantics for Type-Level Programming in Haskell
SHF:SMALL:Haskell 中类型级编程的新语义
  • 批准号:
    2345580
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了