CRII: OAC: Cyberinfrastructure for Machine Learning on Multivariate Time Series Data and Functional Networks

CRII:OAC:多元时间序列数据和功能网络机器学习的网络基础设施

基本信息

  • 批准号:
    2153379
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).From weather analysis to brain region activity analysis, from traffic flow analysis to financial trend analysis, multivariate time series (MVTS) data have been used extensively in predictive and exploratory tasks for numerous domains. MVTS instances represent states of dynamical systems and natural events using multiple time series of interdependent variables. Functional networks leverage the interactions of MVTS variables by finding higher-order relationships among them. The appropriate choice of data representation (MVTS or functional network) poses a challenge in machine learning (ML) efforts that can affect the performance of downstream tasks such as classification, regression, and clustering. This project will develop cyberinfrastructure that is public, web-based, and Graphical User Interface (GUI)-enabled and enables both novel and previously developed predictive, exploratory, and generative tasks on both data representations. The project serves the national interest by promoting the progress of solar physics science through facilitating solar flare prediction from MVTS-based solar magnetic field data and advancing national health through improving prediction models for neurological diseases (e.g., Schizophrenia) from fMRI-based functional brain networks. The research outcomes, including the cyberinfrastructure developed and ML models designed, will provide an opportunity for interdisciplinary research involving undergraduate students including those from underrepresented groups, for course curriculum development, and for high school outreach activities. MVTS instances are formed from the time series records of multiple sensors. In functional networks, the nodes represent the variables, and the edges represent the statistical similarity of the time series of the corresponding nodes. While in the MVTS representation completeness of data is preserved, noisy or missing data in time series due to events such as faults in sensors can compromise the performance of downstream ML tasks. Functional network representations help leverage multi-hop relationships of the variables, but the threshold-dependent sparsity in network construction can make ML models lose important features. Machine learning challenges of MVTS and functional network datasets include the appropriate choice of data representation and the limited number of training samples (especially in the medical domain). This project will provide a unified framework for performing (un)-supervised ML tasks on both data representations through application and customization of contemporary ML modes such as matrix/tensor decomposition, sequence models, Graph Neural Networks (GNN), and dynamic graph embedding. The project will also provide a framework for augmenting datasets with synthetic training samples through autoregressive, autoencoder-based, and adversarial models. The project will design and implement a web-based system that contains modules for data import and preparation, representation learning, data augmentation, validation, result visualization, and for exporting derived and synthetic datasets. The web platform will be hosted in the public domain, and its GUI-based front end will enable researchers to apply back-end ML models without explicitly programming using ML libraries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。从天气分析到脑区活动分析,从交通流分析到金融趋势分析,多变量时间序列(MVTS)数据已广泛用于许多领域的预测和探索性任务。MVTS实例使用相互依赖变量的多个时间序列来表示动态系统和自然事件的状态。功能网络通过寻找MVTS变量之间的高阶关系来利用它们之间的相互作用。数据表示(MVTS或功能网络)的适当选择对机器学习(ML)工作提出了挑战,可能会影响下游任务(如分类、回归和聚类)的性能。该项目将开发公共的、基于网络的、支持图形用户界面(GUI)的网络基础设施,并在两种数据表示上实现新颖的和以前开发的预测、探索和生成任务。该项目通过促进基于mvts的太阳磁场数据的太阳耀斑预测来促进太阳物理科学的进步,并通过改进基于功能磁共振成像的脑功能网络的神经系统疾病(如精神分裂症)预测模型来促进国民健康,从而为国家利益服务。研究成果,包括开发的网络基础设施和设计的机器学习模型,将为涉及本科生(包括来自代表性不足群体的学生)的跨学科研究、课程课程开发和高中外展活动提供机会。MVTS实例由多个传感器的时间序列记录组成。在函数网络中,节点代表变量,边代表对应节点时间序列的统计相似度。虽然在MVTS表示中保留了数据的完整性,但由于传感器故障等事件导致的时间序列中的噪声或缺失数据可能会损害下游ML任务的性能。功能网络表示有助于利用变量的多跳关系,但网络构建中依赖阈值的稀疏性可能使ML模型失去重要特征。MVTS和功能网络数据集的机器学习挑战包括数据表示的适当选择和有限数量的训练样本(特别是在医学领域)。该项目将提供一个统一的框架,通过应用和定制当代ML模式(如矩阵/张量分解、序列模型、图神经网络(GNN)和动态图嵌入),在数据表示上执行(非)监督ML任务。该项目还将提供一个框架,通过自回归、基于自编码器和对抗模型,用合成训练样本增加数据集。该项目将设计并实施一个基于网络的系统,该系统包含数据导入和准备、表示学习、数据增强、验证、结果可视化以及导出衍生和合成数据集的模块。web平台将托管在公共领域,其基于gui的前端将使研究人员能够应用后端机器学习模型,而无需使用机器学习库进行显式编程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ML-Based Streamflow Prediction in the Upper Colorado River Basin Using Climate Variables Time Series Data
使用气候变量时间序列数据对科罗拉多河流域上游基于机器学习的水流进行预测
  • DOI:
    10.3390/hydrology10020029
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hosseinzadeh, Pouya;Nassar, Ayman;Boubrahimi, Soukaina Filali;Hamdi, Shah Muhammad
  • 通讯作者:
    Hamdi, Shah Muhammad
SG-CF: Shapelet-Guided Counterfactual Explanation for Time Series Classification
Feature Selection from Multivariate Time Series Data: A Case Study of Solar Flare Prediction
Multivariate Time Series-based Solar Flare Prediction by Functional Network Embedding and Sequence Modeling
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. M. Hamdi;Abu Fuad Ahmad;S. F. Boubrahimi
  • 通讯作者:
    S. M. Hamdi;Abu Fuad Ahmad;S. F. Boubrahimi
Fast Counterfactual Explanation for Solar Flare Prediction
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shah Muhammad Hamdi其他文献

Discord-based counterfactual explanations for time series classification
  • DOI:
    10.1007/s10618-024-01028-9
  • 发表时间:
    2024-08-07
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Omar Bahri;Peiyu Li;Soukaina Filali Boubrahimi;Shah Muhammad Hamdi
  • 通讯作者:
    Shah Muhammad Hamdi
An Analysis of Mpox Communication on Reddit vs Twitter During the 2022 Mpox Outbreak
  • DOI:
    10.1007/s13178-024-01058-4
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Cory J. Cascalheira;Kelsey Corro;Chenglin Hong;Taylor K. Rohleen;Ollie Trac;Mehrab Beikzadeh;Jillian R. Scheer;Shah Muhammad Hamdi;Soukaina Filali Boubrahimi;Ian W. Holloway
  • 通讯作者:
    Ian W. Holloway

Shah Muhammad Hamdi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shah Muhammad Hamdi', 18)}}的其他基金

SHINE: Understanding the Relationships of Photospheric Vector Magnetic Field Parameters in Solar Flare Occurrences using Graph-based Machine Learning Models
SHINE:使用基于图的机器学习模型了解太阳耀斑发生时光球矢量磁场参数的关系
  • 批准号:
    2301397
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Cyberinfrastructure for Machine Learning on Multivariate Time Series Data and Functional Networks
CRII:OAC:多元时间序列数据和功能网络机器学习的网络基础设施
  • 批准号:
    2305781
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Cyberinfrastructure for IoT Communications
CRII:OAC:物联网通信的网络基础设施
  • 批准号:
    2348464
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Improved Cyberinfrastructure Usage through High-Fidelity Isogeometric Volumetric Spline Model Generation
CRII:OAC:通过高保真等几何体积样条模型生成改进网络基础设施的使用
  • 批准号:
    2245491
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
  • 批准号:
    2348719
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Geometry-aware and Deep Learning-based Cyberinfrastructure for Scalable Modeling of Solids and Fluids
OAC 核心:基于几何感知和深度学习的网络基础设施,用于固体和流体的可扩展建模
  • 批准号:
    2211908
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Cyberinfrastructure for Machine Learning on Multivariate Time Series Data and Functional Networks
CRII:OAC:多元时间序列数据和功能网络机器学习的网络基础设施
  • 批准号:
    2305781
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
  • 批准号:
    2104273
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2007100
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2006816
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了