CRII: OAC: Cyberinfrastructure for IoT Communications

CRII:OAC:物联网通信的网络基础设施

基本信息

  • 批准号:
    2348464
  • 负责人:
  • 金额:
    $ 17.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The number of users affected by data breaches and cyberattacks in the United States has increased recently, making the country the most targeted in 2023. Concurrently, the evolution of the Internet of Things communications and machine learning algorithms has led to an unprecedented influx of data requiring analysis. This has intensified the urgency to identify efficient methods for safeguarding exchanged information during data communication and Machine-Learning training. Fully homomorphic encryption, operating on encrypted data without decryption, emerges as a promising solution. However, its practical integration faces challenges, notably in algorithm intricacy and computational constraints, especially regarding latency. This project aims to optimize resource-intensive operations in existing fully homomorphic encryption schemes and seamlessly integrate the optimized algorithm into federated learning frameworks. This will enhance security while preserving learning performance, revolutionizing secure data analysis in Internet of Things communications. By benefiting federated learning users and cloud providers, this project will enhance security in practical applications such as telehealth and wireless communications, contributing to enhanced privacy, security, and efficiency in critical sectors, ultimately advancing science for society.The project develops an optimized fully homomorphic encryption algorithm to enhance security in Internet of Things (IoT) communications and integrates the optimized fully homomorphic encryption algorithm into federated learning frameworks to enable a secure training process on the encrypted data while maintaining learning performance. The project encompasses the following objectives: (1) developing a low-complexity, fully homomorphic encryption algorithm by optimizing resource-intensive operations; (2) integrating the optimized fully homomorphic encryption algorithm into federated learning to bolster security in IoT communications; and (3) accelerating fully homomorphic encryption and federated learning using parallel processing on graphics processing units and harnessing the combined computational power of both central processing units and graphics processing units. The proposed methodology is a pivotal stride toward propelling secure IoT communications into the future. By synergizing the domains of homomorphic encryption, parallel processing, and machine learning, this approach advances the field’s theoretical underpinnings and introduces novel methodologies that contribute to its growth and evolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国受数据泄露和网络攻击影响的用户数量最近有所增加,使该国成为2023年最受攻击的国家。与此同时,物联网通信和机器学习算法的发展导致了前所未有的需要分析的数据涌入。这加剧了确定在数据通信和机器学习培训期间保护交换信息的有效方法的紧迫性。全同态加密,在加密数据上操作而不解密,成为一种有前途的解决方案。然而,它的实际集成面临着挑战,特别是在算法复杂性和计算限制,特别是关于延迟。该项目旨在优化现有全同态加密方案中的资源密集型操作,并将优化算法无缝集成到联邦学习框架中。这将增强安全性,同时保持学习性能,彻底改变物联网通信中的安全数据分析。通过使联合学习用户和云提供商受益,该项目将增强远程医疗和无线通信等实际应用的安全性,有助于增强关键部门的隐私、安全和效率,最终推动科学为社会服务。该项目开发了一种优化的全同态加密算法,以增强物联网(IoT)的安全性该系统可以实现通信,并将优化的全同态加密算法集成到联邦学习框架中,以在加密数据上实现安全的训练过程,同时保持学习性能。该项目包括以下目标:(1)通过优化资源密集型操作开发低复杂度的全同态加密算法;(2)将优化的全同态加密算法集成到联邦学习中,以加强物联网通信的安全性;以及(3)使用图形处理单元上的并行处理加速全同态加密和联合学习,并利用组合的计算中央处理单元和图形处理单元的能力。提出的方法是推动未来安全物联网通信的关键一步。通过将同态加密、并行处理和机器学习等领域结合起来,该方法推进了该领域的理论基础,并引入了有助于其发展和演变的新方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响评审标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tuy Nguyen其他文献

Tuy Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII: OAC: Improved Cyberinfrastructure Usage through High-Fidelity Isogeometric Volumetric Spline Model Generation
CRII:OAC:通过高保真等几何体积样条模型生成改进网络基础设施的使用
  • 批准号:
    2245491
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
  • 批准号:
    2348719
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII: OAC: Cyberinfrastructure for Machine Learning on Multivariate Time Series Data and Functional Networks
CRII:OAC:多元时间序列数据和功能网络机器学习的网络基础设施
  • 批准号:
    2153379
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
OAC Core: Geometry-aware and Deep Learning-based Cyberinfrastructure for Scalable Modeling of Solids and Fluids
OAC 核心:基于几何感知和深度学习的网络基础设施,用于固体和流体的可扩展建模
  • 批准号:
    2211908
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII: OAC: Cyberinfrastructure for Machine Learning on Multivariate Time Series Data and Functional Networks
CRII:OAC:多元时间序列数据和功能网络机器学习的网络基础设施
  • 批准号:
    2305781
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
  • 批准号:
    2104273
  • 财政年份:
    2021
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2007100
  • 财政年份:
    2020
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2006816
  • 财政年份:
    2020
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了