Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
基本信息
- 批准号:2153690
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Alongside the rapid growth of cloud-computing market and critical developments in machine learning (ML) computation, the cloud-FPGA (Field Programmable Gate Arrays) has become a vital hardware resource for public lease, where multiple tenants can co-reside and share an FPGA chip over time or even simultaneously. With many hardware resources being jointly used in the multi-tenant cloud-FPGA environment, a unique attack surface is created, where a malicious tenant can leverage such indirect interaction to manipulate the circuit application of other tenants, e.g., intentionally injecting faults. It has been demonstrated in prior research that small, but carefully designed, perturbation of the ML model parameter transmission between off-chip memory and on-chip buffer could completely malfunction ML intelligence, even under black-box attack scenario, posing an unprecedented threat to future ML cloud-FPGA system. This project (1) targets to understand the vulnerability of multi-tenant ML cloud-FPGA systems and explore defensive approaches, which are crucial and timely for both industry and academia in the cloud-FPGA computing domain; (2) advances the security of ML cloud system against hardware-based model tampering on off-chip data transmission in multi-tenant cloud-FPGA computing infrastructure; and (3) integrates the research outcomes with education in terms of new curriculum development, undergraduate and graduate student training, as well as promoting women and underrepresented minorities in STEM through K-12 outreach programs. This project integrates ML algorithm security and FPGA hardware security to follow a software-hardware co-design mechanism, exploring novel solutions that improve the security of multi-tenant ML cloud-FPGA system. It consists of three research thrusts. Thrust-1 systematically studies, models, and characterizes an adversarial weight duplication hardware fault injection method, which leverages aggressive power-plundering circuits in malicious tenant to inject fault into the victim tenant's ML model. Thrust-2 explores various ML algorithmic methodologies to enhance the intrinsic robustness and resiliency of ML model against adversarial fault injection into model parameters during the transmission from off-chip memory to on-chip buffer. Thrust-3 investigates FPGA system-level tamper-resistant approaches to further provide comprehensive solutions to improve the ML-FPGA system security.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
除了云计算市场的快速增长和机器学习(ML)计算中的关键发展之外,云FPGA(现场可编程门阵列)已成为公共租赁的重要硬件资源,多个租户可以在其中共同介绍并随着时间的推移甚至同时共享FPGA芯片。由于许多硬件资源在多租户云FPGA环境中共同使用,因此创建了独特的攻击表面,恶意租户可以利用这种间接交互来操纵其他租户的电路应用,例如故意注入故障。在先前的研究中已经证明,即使在黑盒攻击方案下,也可能完全失去ML智能的ML模型参数传输的扰动,可能会完全出现ML智能,对未来的ML ML Cloud FPGA系统构成前所未有的威胁。该项目(1)目标是了解多租户ML Cloud-FPGA系统的脆弱性并探索防御方法,这对于云FPGA计算域中的行业和学术界至关重要且及时; (2)在多租户云FPGA计算基础架构中,ML Cloud System免受基于硬件的模型的安全性篡改; (3)将研究成果与新课程开发,本科和研究生培训以及通过K-12外展计划促进妇女和人为少数族裔的教育成果相结合。该项目集成了ML算法安全性和FPGA硬件安全性,以遵循软件硬件共同设计机制,探索新的解决方案,以提高多租户ML Cloud FPGA系统的安全性。它由三个研究推力组成。推力-1系统地研究,模型并表征了对抗重复重复硬件故障注入方法,该方法利用恶意租户的积极强化电路电路将故障注入受害者租户的ML模型。 Throust-2探索了各种ML算法方法,以增强ML模型对对抗性断层注射到模型参数的内在鲁棒性和弹性,从而在从芯片内存到片上缓冲液到芯片缓冲液的传输过程中。 Throust-3调查了FPGA系统级防篡改方法,以进一步提供全面的解决方案来改善ML-FPGA系统安全性。该奖项反映了NSF的法定任务,并认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
- DOI:10.1109/iccv51070.2023.00478
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Hongwu Peng;Shaoyi Huang;Tong Zhou;Yukui Luo;Chenghong Wang;Zigeng Wang;Jiahui Zhao;Xiaowei Xie;Ang Li;Tony Geng;Kaleel Mahmood;Wujie Wen;Xiaolin Xu;Caiwen Ding
- 通讯作者:Hongwu Peng;Shaoyi Huang;Tong Zhou;Yukui Luo;Chenghong Wang;Zigeng Wang;Jiahui Zhao;Xiaowei Xie;Ang Li;Tony Geng;Kaleel Mahmood;Wujie Wen;Xiaolin Xu;Caiwen Ding
ObfuNAS: A Neural Architecture Search-based DNN Obfuscation Approach
- DOI:10.1145/3508352.3549429
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Tong Zhou;Shaolei Ren;Xiaolin Xu
- 通讯作者:Tong Zhou;Shaolei Ren;Xiaolin Xu
VertexSerum: Poisoning Graph Neural Networks for Link Inference
- DOI:10.1109/iccv51070.2023.00418
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Ruyi Ding;Shijin Duan;Xiaolin Xu;Yunsi Fei
- 通讯作者:Ruyi Ding;Shijin Duan;Xiaolin Xu;Yunsi Fei
MirrorNet: A TEE-Friendly Framework for Secure On-Device DNN Inference
- DOI:10.1109/iccad57390.2023.10323746
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Ziyu Liu;Yukui Luo;Shijin Duan;Tong Zhou;Xiaolin Xu
- 通讯作者:Ziyu Liu;Yukui Luo;Shijin Duan;Tong Zhou;Xiaolin Xu
PASNet: Polynomial Architecture Search Framework for Two-party Computation-based Secure Neural Network Deployment
- DOI:10.1109/dac56929.2023.10247663
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Hongwu Peng;Shangli Zhou;Yukui Luo;Nuo Xu;Shijin Duan;Ran Ran-Ran;Jiahui Zhao;Chenghong Wang;Tong Geng;Wujie Wen;Xiaolin Xu;Caiwen Ding
- 通讯作者:Hongwu Peng;Shangli Zhou;Yukui Luo;Nuo Xu;Shijin Duan;Ran Ran-Ran;Jiahui Zhao;Chenghong Wang;Tong Geng;Wujie Wen;Xiaolin Xu;Caiwen Ding
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaolin Xu其他文献
HMApriori–An Improved Association Analysis Algorithm and Its Application Research
HMApriori——一种改进的关联分析算法及其应用研究
- DOI:
10.1109/icivc47709.2019.8980856 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Pan Huang;Hairong Wang;Xiaolin Xu;Weiwei Bai - 通讯作者:
Weiwei Bai
Multi-level cache system of small spatio-temporal data files based on cloud storage in Smart City
智慧城市中基于云存储的时空小数据文件多级缓存系统
- DOI:
10.1007/s11859-017-1263-0 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiaolin Xu;Zhihua Hu;Xiaojun Liu - 通讯作者:
Xiaojun Liu
The Role of Community-Based Rehabilitation and Community-Based Inclusive Development in Facilitating Access to Justice for Persons with Disabilities Globally
社区康复和社区包容性发展在促进全球残疾人诉诸司法方面的作用
- DOI:
10.13169/intljofdissocjus.3.3.0004 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Heather Michelle Aldersey;Xiaolin Xu;Venkatesh Balakrishna;Maholo Carolyne Sserunkuma;Alaa Sebeh;Zambrano Olmedo;Reshma Parvin Nuri;Ansha Nega Ahmed - 通讯作者:
Ansha Nega Ahmed
Thermodynamic Modelling of Buried Transformer Substations for Dynamic Loading Capability Assessment Considering Underground Heat Accumulative Effect
考虑地下蓄热效应的地埋变电站动载能力评估热力学模型
- DOI:
10.1016/j.ijepes.2020.106153 - 发表时间:
2020-10 - 期刊:
- 影响因子:5.2
- 作者:
Bin Zhou;Xiaolin Xu;Siu Wing Or;Canbing Li;Qiuwei Wu;Cong Zhang;Wenfang Li - 通讯作者:
Wenfang Li
URMG: Enhanced CBMG-Based Method for Automatically Testing Web Applications in the Cloud
URMG:基于 CBMG 的增强型云中 Web 应用程序自动测试方法
- DOI:
10.1109/tst.2014.6733209 - 发表时间:
2014-02 - 期刊:
- 影响因子:6.6
- 作者:
Xiaolin Xu;Hai Jin;Song Wu;Lixiang Tang;Yihong Wang - 通讯作者:
Yihong Wang
Xiaolin Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaolin Xu', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2023 New England Hardware Security Day (NEHWS2023)
旅行:2023 年新英格兰硬件安全日 NSF 学生旅行补助金 (NEHWS2023)
- 批准号:
2315830 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CICI:TCR:CAREFREE:Cloud infrAstructure ResiliencE of the Future foR tEstbeds, accelerators and nEtworks
CICI:TCR:CAREFREE:未来测试床、加速器和网络的云基础设施弹性
- 批准号:
2319962 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247892 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
- 批准号:
2326597 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Securing Reconfigurable Hardware Accelerator for Machine Learning: Threats and Defenses
职业:保护用于机器学习的可重新配置硬件加速器:威胁与防御
- 批准号:
2239672 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
- 批准号:
1955337 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
- 批准号:
2043183 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant