Collaborative Research: SHF: Small: Enabling Caches and GPUs for Energy Harvesting Systems

合作研究:SHF:小型:为能量收集系统启用缓存和 GPU

基本信息

  • 批准号:
    2153749
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Energy-harvesting systems collect energy from variant ambient sources such as solar power, thermal energy, and radio-frequency radiation. Due to unreliable energy sources, energy-harvesting systems suffer from frequent power failures. Hence, energy-harvesting systems should be able to save the current program states before a power failure, restore the consistent program states when the power comes back, and seamlessly resume program execution as if nothing happened. However, maintaining crash-consistent states across power cycles is challenging. As a result, the current generation of energy-harvesting systems has been designed with simple hardware configurations such as a single central processing unit (CPU) without a cache, delivering limited computing capabilities. Going forward, in the new Internet of Things era, ever-increasing demand for substantially more high-performance energy-harvesting systems capable of supporting emerging artificial-intelligence and machine-learning applications are expected. This project proposes new software and hardware co-design solutions that allow energy-harvesting systems to leverage caches and graphic processing units (GPUs) for high performance and energy efficiency. The project is expected to serve as the foundation to unlock next-generation Internet of Things services, based on battery-less energy-harvesting systems. The project also aims to incorporate research findings in undergraduate teaching and offer K-12 outreach programs for female students to promote more equitable outcomes for women in computer science.The objective of this project is to enable caches and GPUs in energy-harvesting systems and to design next-generation energy harvesting systems with high performance and energy efficiency. To this end, the project proposes compiler- and hardware-based solutions in three research thrusts. The project will explore a compiler-based solution that allows existing energy-harvesting systems to use a traditional data cache without hardware modification. The project will explore a new research direction that avoids expensive logging at run time, yet instead recovers potentially un-persisted stores at reboot time. To achieve better performance, the project aims to design a new hardware-based cache for energy-harvesting systems, which combines the benefits of a write-back cache and a write-through cache without their respective downsides. The project will design the first energy-harvesting GPU system that introduces a new checkpointing solution for GPU registers and a lightweight persistence solution for GPU shared memory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能量收集系统从各种环境源收集能量,例如太阳能、热能和射频辐射。由于不可靠的能源,能量收集系统遭受频繁的电力故障。因此,能量收集系统应该能够在断电前保存当前程序状态,在电源恢复时恢复一致的程序状态,并无缝地恢复程序执行,就像什么都没有发生一样。然而,在电源周期中保持崩溃一致性状态是具有挑战性的。因此,当前一代的能量收集系统设计有简单的硬件配置,例如没有缓存的单个中央处理单元(CPU),提供有限的计算能力。展望未来,在新的物联网时代,预计对能够支持新兴人工智能和机器学习应用的高性能能量收集系统的需求将不断增加。该项目提出了新的软件和硬件协同设计解决方案,允许能量收集系统利用缓存和图形处理单元(GPU)实现高性能和高能效。该项目预计将作为解锁下一代物联网服务的基础,基于无电池能量收集系统。该项目还旨在将研究成果纳入本科教学,并为女性学生提供K-12推广计划,以促进女性在计算机科学领域获得更公平的成果。该项目的目标是在能量收集系统中启用缓存和GPU,并设计具有高性能和高能效的下一代能量收集系统。为此,该项目提出了基于编译器和硬件的解决方案,在三个研究方向。该项目将探索一种基于编译器的解决方案,允许现有的能量收集系统使用传统的数据缓存,而无需修改硬件。该项目将探索一个新的研究方向,避免在运行时进行昂贵的日志记录,而是在重启时恢复潜在的非持久化存储。为了实现更好的性能,该项目旨在为能量收集系统设计一种新的基于硬件的缓存,它结合了回写缓存和直写缓存的优点,而没有各自的缺点。该项目将设计第一个能量收集GPU系统,该系统为GPU寄存器引入新的检查点解决方案,并为GPU共享内存引入轻量级持久性解决方案。该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估被认为值得支持优点和更广泛的影响力审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changhee Jung其他文献

Low-cost soft error resilience with unified data verification and fine-grained recovery for acoustic sensor based detection
低成本的软错误恢复能力,具有统一的数据验证和细粒度恢复,用于基于声学传感器的检测
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qingrui Liu;Changhee Jung;Dongyoon Lee;Devesh Tiwari
  • 通讯作者:
    Devesh Tiwari
Adaptive execution techniques of parallel programs for multiprocessors
多处理器并行程序的自适应执行技术
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaejin Lee;Jungho Park;Honggyu Kim;Changhee Jung;Daeseob Lim;Sang
  • 通讯作者:
    Sang
CommAnalyzer: Automated Estimation of Communication Cost on HPC Clusters Using Sequential Code
CommAnalyzer:使用顺序代码自动估计 HPC 集群上的通信成本
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Helal;Changhee Jung;Wu;Y. Hanafy
  • 通讯作者:
    Y. Hanafy
ProRace
职业竞赛
  • DOI:
    10.1145/3093336.3037708
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong Zhang;Changhee Jung;Dongyoon Lee
  • 通讯作者:
    Dongyoon Lee
Soft Error Resilience at Near-Zero Cost
以接近零成本的软错误恢复能力

Changhee Jung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Changhee Jung', 18)}}的其他基金

Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
  • 批准号:
    2314681
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Rethinking HPC Resilience in the Exascale Era
职业:重新思考百亿亿次时代的 HPC 弹性
  • 批准号:
    2001124
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Rethinking HPC Resilience in the Exascale Era
职业:重新思考百亿亿次时代的 HPC 弹性
  • 批准号:
    1750503
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
SHF: Small: Compiler and Architectural Techniques for Soft Error Resilience
SHF:小型:软错误恢复能力的编译器和架构技术
  • 批准号:
    1527463
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了