CAREER: Conformal Geometry Applied to Shape Analysis and Geometric Modeling
职业:共形几何应用于形状分析和几何建模
基本信息
- 批准号:0448399
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Conformal structure is a natural structure associated with Riemann surfaces (General surfaces are Riemann surfaces) and plays fundamental roles in geometry and physics. Conformal structure has proven useful in graphics and vision, for example, conformal parameterization provides high-quality texture mapping without local distortion, and it is used in surface matching and morphing with applications such as brain mapping.The investigator explores the potential of conformal geometry in computer graphics and vision and ultimately makes the interdisciplinary field of computational conformal geometry accessible and useful to the society. With respect to its direct impacts, the investigator applies conformal geometry to geometric modeling and shape analysis. Specifically, 1.Construct shape spaces based on Teichmuller space theory, where the space of all surfaces is modeled as a finite dimensional manifold, each point represents a conformal equivalence class of surfaces (a Riemann surface), and the metric of the shape space measures the deviation of conformal structures of the two shapes. An additional related goal is to build a geometric search engine. 2. Find a systematic way to generalize geometric constructions defined on planar domains to manifolds, such as manifold triangular BSplines and manifold Powell- Sabin surfaces. Design new surface subdivision schemes by inserting knots into manifold BSpline surfaces. With aspect to education, the investigator finds an effective way to teach conformal geometry (Riemann surface theory) to non-math majors by implementing practical algorithms to visualize the abstract concepts and establish the understanding of the profound theories.Conformal geometry theory is fully developed but very abstract. The investigator builds and disseminates a concrete set of software tools to compute and visualize the conformal structure of arbitrary real surfaces, which makes the theory accessible to students and its practical applications useful to the broader community. Manifold BSpline tools based on conformal geometry bridge the gap between traditional polygonal meshes in graphics and spline surfaces in CAGD. The generic geometric search engine is applied to a geometric database and an Internet search engine. The investigator complements the software development with a systematic development of the classic material in a context that permits integration into the curriculum of non-math majors. The fields of computer graphics, vision, scientific computing, medical imaging, mathematics and physics all benefit from the research and education of computational conformal geometry directly. Computational conformal geometry has already made impacts on the graphics industry and will be more broadly applied in the future.
共形结构是与黎曼曲面(一般曲面都是黎曼曲面)相关的一种自然结构,在几何和物理中起着重要的作用。共形结构在图形学和视觉中已经被证明是有用的,例如,共形参数化提供了高质量的纹理映射,而不会产生局部失真,并且它被用于表面匹配和变形,如大脑映射。研究人员探索了共形几何在计算机图形学和视觉中的潜力,并最终使计算共形几何的跨学科领域对社会有用。对于它的直接影响,研究者将共形几何应用于几何建模和形状分析。具体地说,1.基于Teichmuller空间理论构造形状空间,其中所有曲面的空间被建模为有限维流形,每个点表示一个共形等价曲面类(Riemann曲面),形状空间的度量度量度量两个形状的共形结构的偏差。另一个相关的目标是建立一个几何搜索引擎。2.找到一个系统的方法来推广几何结构定义在平面域上的流形,如流形三角B样条和流形Powell-Sabin曲面。通过在流形B样条曲面中插入节点,设计新的曲面细分方案。在教育方面,研究者通过实施实用算法,将抽象概念形象化,建立对深奥理论的理解,找到了一种非数学专业的共形几何(黎曼曲面理论)教学的有效途径。研究人员构建并传播了一套具体的软件工具来计算和可视化任意真实的表面的共形结构,这使得学生可以理解该理论,并且其实际应用对更广泛的社区有用。基于保角几何的流形B样条工具弥补了传统图形学中多边形网格与CAGD中样条曲面之间的差距。通用几何搜索引擎应用于几何数据库和互联网搜索引擎。调查人员补充了软件开发与经典材料的系统开发,允许整合到非数学专业的课程。计算机图形学、视觉、科学计算、医学成像、数学和物理等领域都直接得益于计算共形几何的研究和教育。计算共形几何已经对图形学产生了影响,并将在未来得到更广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianfeng Gu其他文献
A novel computer aided detection (CADe) scheme for colonic polyps based on colon structure decomposition
基于结肠结构分解的新型结肠息肉计算机辅助检测(CADe)方案
- DOI:
10.1109/nssmic.2013.6829287 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Huafeng Wang;Zhengrong Liang;Lihong C. Li;Hao Peng;Bowen Song;Hao Han;Yan Liu;Fangfang Han;Xianfeng Gu - 通讯作者:
Xianfeng Gu
GRIP: Greedy Routing through dIstributed Parametrization for guaranteed delivery in WSNs
- DOI:
10.1007/s11276-014-0770-6 - 发表时间:
2014-07-09 - 期刊:
- 影响因子:2.100
- 作者:
Minqi Zhang;Feng Li;Ying He;Juncong Lin;Xianfeng Gu;Jun Luo - 通讯作者:
Jun Luo
Erratum to: Optimization of Surface Registrations Using Beltrami Holomorphic Flow
- DOI:
10.1007/s10915-011-9541-z - 发表时间:
2011-09-16 - 期刊:
- 影响因子:3.300
- 作者:
Lok Ming Lui;Tsz Wai Wong;Wei Zeng;Xianfeng Gu;Paul M. Thompson;Tony F. Chan;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Free-Radical-Promoted Copper-Catalyzed Intermolecular Cyanosulfonylation and Cyanotrifluoromethylation of Unactivated Alkenes in Water-Containing Solvents
自由基促进的铜催化含水溶剂中未活化烯烃的分子间氰磺酰化和氰基三氟甲基化
- DOI:
10.1021/acs.joc.8b02073 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yan Zhu;Jinlong Tian;Xianfeng Gu;Yonghui Wang - 通讯作者:
Yonghui Wang
Computational generation and conformal fabrication of woven fabric structures by harmonic foliation
通过和谐叶理计算生成和机织物结构的保形制造
- DOI:
10.1016/j.cma.2020.112874 - 发表时间:
2020-05 - 期刊:
- 影响因子:7.2
- 作者:
Yang Guo;Qian Ye;Xiaopeng Zheng;Shikui Chen;Na Lei;Yuanqi Zhang;Xianfeng Gu - 通讯作者:
Xianfeng Gu
Xianfeng Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xianfeng Gu', 18)}}的其他基金
I-Corps: Developing A 3D Total Body Imaging and Analysis System for Early Detection of Skin Cancer
I-Corps:开发用于早期检测皮肤癌的 3D 全身成像和分析系统
- 批准号:
2115095 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis of Computer and Social Networks
合作研究:计算机和社交网络的几何分析
- 批准号:
1418255 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
- 批准号:
1221339 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CCF-TF: Computing Geometric Structures of 3-Manifolds
合作研究:CCF-TF:计算3流形的几何结构
- 批准号:
0830550 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
IIS: III: Small: Conformal Geometry for Computer Vision
IIS:III:小:计算机视觉的共形几何
- 批准号:
0916286 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
SGER: Discrete Volumetric Curvature Flow for Graphics Applications
SGER:图形应用的离散体积曲率流
- 批准号:
0841514 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
III-CXT: Collaborative Research: Integrated Modeling and Learning of Multimodality Data across Subjects for Brain Disorder Study
III-CXT:协作研究:针对脑部疾病研究的跨学科多模态数据的集成建模和学习
- 批准号:
0713145 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
MSPA-MCS: Discrete Curvature Flows on Graphics and Visualization
MSPA-MCS:图形和可视化上的离散曲率流
- 批准号:
0626223 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Computer Graphics and Visualization Using Conformal Geometry
MSPA-MCS:协作研究:使用共形几何的计算机图形和可视化
- 批准号:
0528363 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
- 批准号:
21K03269 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation Groups in Conformal and Projective Geometry
共角几何和射影几何中的变换群
- 批准号:
2109347 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
-- - 项目类别:
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
- 批准号:
2046514 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
The Complex and Conformal Geometry of 4-Manifolds
4-流形的复杂共形几何
- 批准号:
1906267 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant