Tournament Immersion and Rao's Conjecture
锦标赛沉浸与拉奥猜想
基本信息
- 批准号:0901075
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPrincipal Investigator: Seymour, Paul D. Proposal Number: DMS - 0901075 Institution: Princeton UniversityTitle: Tournament Immersion and Rao's ConjectureThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The proposal addresses a variety of new problems that arise from a conjecture of S. B. Rao. Rao's conjecture itself concerns degree sequences of graphs, and remains open, although in joint work with Maria Chudnovsky, the PI has made substantial progress, and believes they are near a complete proof. Rao's conjecture is a statement about well-quasi-ordering; that given infinitely many degree sequences, one of them must "contain" another in a sense. The work with Robertson gave rise to a number of offshoots, in complexity theory and in pure graph theory, and similarly Rao's conjecture suggests a number of side questions.The PI, in joint work with Neil Robertson, already settled two major questions about well-quasi-ordering: Wagner's conjecture, that given infinitely many graphs, one must be a minor of another, and Nash-Williams' conjecture, that given infinitely many graphs, one must be contained in another as an "immersion." It seems that the methods they developed for these two conjectures can also be applied to Rao's conjecture. In addition, they have come across several new and interesting questions about graphs, as by-products of their work on Rao's conjecture, and plan to work on a number of these. These side questions would be excellent problems for graduate student theses, and the PI expects to work with students to answer them.
主要研究者:Seymour,Paul D。提案编号:DMS - 0901075机构:普林斯顿大学标题:锦标赛沉浸和饶氏猜想该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。B。娆拉奥猜想本身涉及图的度序列,并且仍然是开放的,尽管在与Maria Chudnovsky的联合工作中,PI已经取得了实质性的进展,并且相信他们接近一个完整的证明。拉奥猜想是一个关于良准序的陈述;给定无穷多个度序列,其中一个在某种意义上必须“包含”另一个。与罗伯逊的工作产生了一些分支,在复杂性理论和纯图论,同样拉奥的猜想提出了一些侧面的问题。PI,在联合工作与尼尔罗伯逊,已经解决了两个主要问题,以及准序:瓦格纳猜想,即给定无穷多个图,其中一个必须是另一个的子图,以及纳什-威廉姆斯猜想,给定无穷多个图,其中一个必须包含在另一个图中作为“浸入”。“看来,他们为这两个猜想开发的方法,也可以应用到拉奥猜想上。此外,他们还遇到了几个新的和有趣的问题,关于图,作为副产品,他们的工作对饶的猜想,并计划对其中一些工作。这些侧面问题将是研究生论文的优秀问题,PI希望与学生一起回答这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Seymour其他文献
Induced Subgraph Density. I. A loglog Step Towards Erd̋s–Hajnal
诱导子图密度 I. 迈向 Erd̋s–Hajnal 的对数日志步骤。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1
- 作者:
Matija Bucić;Tung H. Nguyen;Alex Scott;Paul Seymour - 通讯作者:
Paul Seymour
Excluding pairs of graphs
- DOI:
10.1016/j.jctb.2014.01.001 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:
- 作者:
Maria Chudnovsky;Alex Scott;Paul Seymour - 通讯作者:
Paul Seymour
Trees and almost-linear stable sets
树和近线性稳定集
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Tung H. Nguyen;Alex Scott;Paul Seymour - 通讯作者:
Paul Seymour
Solution of three problems of Cornuéjols
- DOI:
10.1016/j.jctb.2007.05.004 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Maria Chudnovsky;Paul Seymour - 通讯作者:
Paul Seymour
Finding minimum clique capacity
- DOI:
10.1007/s00493-012-2891-9 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:1.000
- 作者:
Maria Chudnovsky;Sang-Il Oum;Paul Seymour - 通讯作者:
Paul Seymour
Paul Seymour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Seymour', 18)}}的其他基金
DMS-EPRSC: Induced Subgraphs and Graph Structure
DMS-EPRSC:归纳子图和图结构
- 批准号:
2154169 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1265563 - 财政年份:2013
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: The Four-Color Theorem and Beyond
FRG:协作研究:四色定理及其他
- 批准号:
0354465 - 财政年份:2004
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似海外基金
Cloud immersion and the future of tropical montane forests
云沉浸和热带山地森林的未来
- 批准号:
EP/Y027736/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Fellowship
Reimagining Liveness, Immersion, and Participation in a Post-pandemic Theatre for Generation Z Audiences
为 Z 世代观众重新构想疫情后剧院的活力、沉浸感和参与度
- 批准号:
2872522 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Studentship
Positive STEM Experiences for Underrepresented and Rural 6-12th Graders: A Novel Approach to Pre-Collegiate Neuroscience using a Train-the-Trainer Model, Summer Immersion, and Sustained Mentorship
为代表性不足和农村 6-12 年级学生提供积极的 STEM 体验:利用培训师培训模型、暑期沉浸式学习和持续指导的大学预科神经科学新方法
- 批准号:
10665443 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Medical College of Wisconsin Physician Scientist Immersion Program
威斯康星医学院医师科学家浸入式项目
- 批准号:
10591714 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
The Factors and Environment That Promote the Verbal Output of English in Children Enrolled in a Kindergarten English Immersion Program
促进幼儿园英语沉浸式英语语言输出的因素和环境
- 批准号:
23K12260 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Material regeneration of waste concrete by immersion in extremely high-concentration carbonated water
废混凝土浸入极高浓度碳酸水中的材料再生
- 批准号:
23K17777 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Cognitive Behavioral Immersion: A Randomized Control Trial of Peer-Based Coaching in the Metaverse
认知行为沉浸:元宇宙中同伴辅导的随机对照试验
- 批准号:
10759841 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Overcome Social Anxiety through Immersion in Virtual Reality
通过沉浸在虚拟现实中克服社交焦虑
- 批准号:
10055550 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Collaborative R&D