Induced Subgraphs and Coloring

诱导子图和着色

基本信息

  • 批准号:
    1800053
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This mathematics research project will investigate several connections between the local and global structure of a graph. The connections under study have the form "if a graph does not contain this (small, local) object then the graph has a global structural property that most graphs do not possess." Such results, relating the non-existence of a local object and the presence of a global structure, can be of immense importance. Prior work established exactly this for a different kind of graph containment, namely graph minors, and this result has been of great interest and has had very many applications. This project seeks analogous results for induced subgraphs. The project investigates two such connections: the Gyarfas-Sumner conjecture, that for any tree and any complete graph, all graphs that contain neither of them can be vertex-partitioned into a small number of parts each containing no edge; and the Liebenau-Pilipczuk conjecture, that for any tree, all graphs not containing it or its complement admit two disjoint linear sets of vertices, either completely joined or with no edges between them. In both cases, "tree" cannot be replaced by any more general kind of graph. The first conjecture is one of several problems about so-called "chi-boundedness;" the Gyarfas-Sumner conjecture is the main chi-boundedness conjecture that is not yet resolved. The second conjecture grew from attempts to resolve the Erdos-Hajnal conjecture. The latter asserts that for any graph, all graphs not containing it have a clique or stable set of polynomial size, unlike general graphs, in which the largest clique or stable set might only have logarithmic size. It is planned to investigate several conjectures of the form that for any graph, all graphs not containing this fixed graph or its complement have two large sets of vertices, either completely joined or joined by no edges (not sets of linear size, just of polynomial size).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个数学研究项目将研究图的局部和全局结构之间的几种联系。 研究中的连接具有以下形式:“如果一个图不包含这个(小的,局部的)对象,那么这个图就具有大多数图所不具备的全局结构属性。“这种结果,涉及不存在的局部对象和存在的全球结构,可以是非常重要的。先前的工作建立了这正是一种不同的图的包容性,即图未成年人,这一结果一直非常感兴趣,并有非常多的应用。这个项目寻求诱导子图的类似结果。该项目研究了两个这样的联系:Gyarfas-Sumner猜想,即对于任何树和任何完全图,所有不包含它们的图都可以被顶点划分为少量的部分,每个部分都不包含边;和Liebenau-Pilipczuk猜想,即对于任何树,所有不包含它或它的补图的图都允许两个不相交的线性顶点集,或者完全连接或者在它们之间没有边缘。在这两种情况下,“树”不能被任何更一般的图所取代。第一个猜想是关于所谓的“卡有界性”的几个问题之一; Gyarfas-Sumner猜想是主要的卡有界性猜想,尚未解决。第二个猜想来自于试图解决埃尔多斯-哈伊纳尔猜想。后者断言,对于任何图,所有不包含它的图都有一个多项式大小的团或稳定集,不像一般图,其中最大的团或稳定集可能只有对数大小。 计划研究以下形式的几个图:对于任何图,不包含此固定图或其补图的所有图都有两个大的顶点集,要么完全连接,要么没有边连接(不是线性大小的集合,多项式大小)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting an Odd Hole
  • DOI:
    10.1145/3375720
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Chudnovsky;A. Scott;P. Seymour;S. Spirkl
  • 通讯作者:
    M. Chudnovsky;A. Scott;P. Seymour;S. Spirkl
Corrigendum to “Bisimplicial vertices in even-hole-free graphs”
对“偶无孔图中的双单纯顶点”的勘误
  • DOI:
    10.1016/j.jctb.2020.02.001
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Addario-Berry, Louigi;Chudnovsky, Maria;Havet, Frédéric;Reed, Bruce;Seymour, Paul
  • 通讯作者:
    Seymour, Paul
Induced subgraphs of graphs with large chromatic number. VIII. Long odd holes
  • DOI:
    10.1016/j.jctb.2019.05.001
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Chudnovsky;A. Scott;P. Seymour;S. Spirkl
  • 通讯作者:
    M. Chudnovsky;A. Scott;P. Seymour;S. Spirkl
Excluding the fork and antifork
不包括分叉和反分叉
  • DOI:
    10.1016/j.disc.2019.111786
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Chudnovsky, Maria;Cook, Linda;Seymour, Paul
  • 通讯作者:
    Seymour, Paul
Concatenating Bipartite Graphs
连接二分图
  • DOI:
    10.37236/8451
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chudnovsky, Maria;Hompe, Patrick;Scott, Alex;Seymour, Paul;Spirkl, Sophie
  • 通讯作者:
    Spirkl, Sophie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Seymour其他文献

Induced Subgraph Density. I. A loglog Step Towards Erd̋s–Hajnal
诱导子图密度 I. 迈向 Erd̋s–Hajnal 的对数日志步骤。
Excluding pairs of graphs
  • DOI:
    10.1016/j.jctb.2014.01.001
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maria Chudnovsky;Alex Scott;Paul Seymour
  • 通讯作者:
    Paul Seymour
Trees and almost-linear stable sets
树和近线性稳定集
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tung H. Nguyen;Alex Scott;Paul Seymour
  • 通讯作者:
    Paul Seymour
Solution of three problems of Cornuéjols
  • DOI:
    10.1016/j.jctb.2007.05.004
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maria Chudnovsky;Paul Seymour
  • 通讯作者:
    Paul Seymour
Finding minimum clique capacity
  • DOI:
    10.1007/s00493-012-2891-9
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Maria Chudnovsky;Sang-Il Oum;Paul Seymour
  • 通讯作者:
    Paul Seymour

Paul Seymour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Seymour', 18)}}的其他基金

DMS-EPRSC: Induced Subgraphs and Graph Structure
DMS-EPRSC:归纳子图和图结构
  • 批准号:
    2154169
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
  • 批准号:
    1265563
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Tournament Immersion and Rao's Conjecture
锦标赛沉浸与拉奥猜想
  • 批准号:
    0901075
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Four-Color Theorem and Beyond
FRG:协作研究:四色定理及其他
  • 批准号:
    0354465
  • 财政年份:
    2004
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Graph and Digraph Minors
图和有向图未成年人
  • 批准号:
    0070912
  • 财政年份:
    2000
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Graph and Digraph Structure
图和有向图结构
  • 批准号:
    9701598
  • 财政年份:
    1997
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似海外基金

Forbidding Induced Subgraphs: Decompositions, Coloring and Algorithms
禁止诱导子图:分解、着色和算法
  • 批准号:
    2348219
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Forbidden and Colored Subgraphs
禁止和彩色子图
  • 批准号:
    2247013
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
  • 批准号:
    RGPIN-2017-06673
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
  • 批准号:
    2228176
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
DMS-EPRSC: Induced Subgraphs and Graph Structure
DMS-EPRSC:归纳子图和图结构
  • 批准号:
    2154169
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
  • 批准号:
    RGPIN-2020-03912
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
DMS-EPSRC INDUCED SUBGRAPHS AND GRAPH STRUCTURE
DMS-EPSRC 导出的子图和图结构
  • 批准号:
    EP/X013642/1
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Complexity of Colouring Graphs with Forbidden Subgraphs
带有禁止子图的着色图的复杂性
  • 批准号:
    534944-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
  • 批准号:
    RGPIN-2017-06673
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
  • 批准号:
    RGPIN-2020-03912
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了