Gaussian Curvature, Geometric Combinatorics and the Fourier Transform

高斯曲率、几何组合和傅里叶变换

基本信息

  • 批准号:
    0245369
  • 负责人:
  • 金额:
    $ 11.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

PI: Alex Iosevich, University of Missouri, ColumbiaDMS-0245369Abstract:The main theme of this proposal is interaction between analytic, combinatorial and number theoretic methods. The specific problems discussed in the proposal include the distribution of lattice points in convex domains, analysis and combinatorics of distance sets, decay properties ofthe Fourier transform of characteristic functions of bounded domains, the existence and non-existence of Fourier bases, and bounded-ness of maximal averages over hypersurfaces. Each category has an important geometric combinatorial component. In addition, the distribution of lattice points in convex domains, the problems involving distance sets, and the study of Fourier bases have interesting number theoretic aspects. Finally, these problems have an impact on each other. For example, decay properties of the Fourier transforms of characteristic functions of sets are used in the study of all the aforementioned problems. Similarly, the geometric combinatorial techniques developed in the study of the existence of Fourier bases have also been applied to the study of the distribution of lattice points and properties of distance sets.While many of the issues described in this proposal are quite theoretical, they are closely connected with widely applicable concepts and problems. Many of techniques used to study the existence of Fourier bases are strongly related to concepts used in data transmission and coding. The techniques developed in the study of maximal averages over surfaces have been appliedover the years to obtain regularity results for the linear and non-linear wave equations, highly useful in physics and engineering. It is quite interesting is that these results, in turn, have deep combinatorial applications, creating a cycle of useful and beautiful applications.
Pi:Alex Iosevich,密苏里大学,哥伦比亚DMS-0245369摘要:这项建议的主要主题是分析、组合和数论方法之间的相互作用。文中讨论的具体问题包括:凸域上格点的分布、距离集的分析与组合、有界域上特征函数的傅里叶变换的衰减性、傅立叶基的存在与不存在以及超曲面上极大平均值的有界性。每个范畴都有一个重要的几何组合成分。此外,凸域上格点的分布,涉及距离集的问题,以及傅立叶基的研究都有有趣的数论方面。最后,这些问题是相互影响的。例如,集合的特征函数的傅里叶变换的衰减性被用于上述所有问题的研究。同样,在研究傅立叶基的存在性时发展起来的几何组合技术也被应用到格点的分布和距离集的性质的研究中。虽然本方案中描述的许多问题都是非常理论的,但它们与广泛适用的概念和问题密切相关。许多用于研究傅立叶基的存在的技术与数据传输和编码中使用的概念密切相关。多年来,在研究表面上的最大平均值方面发展起来的技术已被应用于获得线性和非线性波动方程的正则性结果,这在物理和工程上都很有用。非常有趣的是,这些结果反过来具有深刻的组合应用,创造了一个有用和美丽的应用循环。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Iosevich其他文献

The VC-Dimension and Point Configurations in $${\mathbb F}_q^2$$
  • DOI:
    10.1007/s00454-023-00570-5
  • 发表时间:
    2023-10-10
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    David Fitzpatrick;Alex Iosevich;Brian McDonald;Emmett Wyman
  • 通讯作者:
    Emmett Wyman
Generalized point configurations in math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msubsupmrowmi mathvariant="double-struck"F/mi/mrowmrowmiq/mi/mrowmrowmid/mi/mrow/msubsup/math
数学中的广义点配置 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" 类="math" msubsup mrow mi mathvariant="double-struck"F/mi mrow mrow mi q/mi mrow mrow mid/mi mrow/msubsup/math
  • DOI:
    10.1016/j.ffa.2024.102472
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Paige Bright;Xinyu Fang;Barrett Heritage;Alex Iosevich;Tingsong Jiang;Hans Parshall;Maxwell Sun
  • 通讯作者:
    Maxwell Sun
Intersections of sets and Fourier analysis
  • DOI:
    10.1007/s11854-016-0004-1
  • 发表时间:
    2016-03-17
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Suresh Eswarathasan;Alex Iosevich;Krystal Taylor
  • 通讯作者:
    Krystal Taylor
Spherical means and the restriction phenomenon
Improved incidence bounds over arbitrary finite fields via the VC-dimension theory
通过 VC 维理论改进了任意有限域上的发生率界
  • DOI:
    10.1016/j.ejc.2024.103928
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alex Iosevich;Thang Pham;Steven Senger;Michael Tait
  • 通讯作者:
    Michael Tait

Alex Iosevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Iosevich', 18)}}的其他基金

International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
  • 批准号:
    2154480
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
On Problems in and Connections between Analysis, Geometry and Combinatorics
论分析、几何和组合学中的问题和联系
  • 批准号:
    2154232
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
The Northeast Analysis Network
东北分析网
  • 批准号:
    1602652
  • 财政年份:
    2016
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
Geometric configuration and Fourier analysis
几何配置和傅里叶分析
  • 批准号:
    1045404
  • 财政年份:
    2010
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Continuing Grant
Geometric configuration and Fourier analysis
几何配置和傅里叶分析
  • 批准号:
    0901553
  • 财政年份:
    2009
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
  • 批准号:
    0456306
  • 财政年份:
    2005
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
The Role of Gaussian Curvature in Harmonic Analysis and Related Areas
高斯曲率在调和分析及相关领域中的作用
  • 批准号:
    0087339
  • 财政年份:
    2000
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
Maximal Averages Over Hypersurfaces
超曲面上的最大平均值
  • 批准号:
    9996292
  • 财政年份:
    1998
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
Maximal Averages Over Hypersurfaces
超曲面上的最大平均值
  • 批准号:
    9706825
  • 财政年份:
    1997
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant

相似海外基金

Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
  • 批准号:
    23K12992
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometric analysis on graphs with Ricci curvature bounded from below
下界里奇曲率图的几何分析
  • 批准号:
    23K03103
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constant scalar curvature Kahler metrics of Poincare type and algebro-geometric stability
庞加莱型恒定标量曲率卡勒度量和代数几何稳定性
  • 批准号:
    23K19020
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
  • 批准号:
    22K03303
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis on spaces equipped with modifications of the Ricci curvature
带有修正里奇曲率的空间的几何分析
  • 批准号:
    22K13915
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
  • 批准号:
    2142575
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Continuing Grant
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
  • 批准号:
    RGPIN-2020-04683
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
  • 批准号:
    RGPIN-2020-04683
  • 财政年份:
    2021
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了