Pluripotential Theory and Random Geometry on Compact Complex Manifolds

紧复流形上的多势理论和随机几何

基本信息

  • 批准号:
    2154273
  • 负责人:
  • 金额:
    $ 23.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project lies in the mathematical fields of complex analysis, complex geometry, and potential theory. Complex analysis studies functions depending on variables that are complex numbers. Complex analysis and potential theory provide powerful tools for solving important problems from other fields of pure and applied mathematics (e.g., image and signal processing) and physics (e.g., quantum mechanics and statistical physics). The project will focus on a diverse collection of questions advancing knowledge and understanding in these fields. New techniques from complex analysis and potential theory will be applied to questions originating in fields as diverse as complex and algebraic geometry, mathematical physics, and number theory. For example, the project will investigate sections of holomorphic line bundles and the asymptotics of the related Bergman kernel functions. These topics are related, for instance, to the quantum mechanics of particles in magnetic fields. The project will impact the development of human resources by effectively integrating research and education, and will include the supervision of doctoral theses. The project will also contribute to the organization of conferences in several complex variables. These events will bring together established mathematicians, early-career researchers, and graduate students to discuss mathematics research and student mentoring. This project will address questions originating in the fields of pluripotential theory and random complex geometry, in the setting of compact complex manifolds. Some of these questions have important applications to complex and algebraic geometry, mathematical physics, or number theory. A unifying theme is a focus on plurisubharmonic functions and positive closed currents as objects of investigation or as tools to be employed. The first direction of research involves quantization problems on compact complex spaces. Such questions have applications to both statistical physics (via quantum chaos) and number theory (via quantum unique ergodicity for modular forms). Associated to a sequence of singular Hermitian holomorphic line bundles over a compact complex space, there are natural Bergman spaces of square-integrable holomorphic sections. Suitable positivity assumptions on curvature will be considered in connection with the growth of the dimension of these spaces, the convergence of the Fubini-Study currents, and the asymptotics of the associated Bergman kernel functions. Another topic to be considered is the asymptotic distribution of common zeros of random sequences of m-tuples of sections in the Bergman spaces, where special attention will be paid to estimates for the speed of convergence. In connection with holomorphic sections that vanish to high order along an analytic subset, the asymptotics of the corresponding partial Bergman kernels will be studied. Another direction of research deals with pluripotential theory on compact Kaehler manifolds. Here interesting new phenomena arise, distinct from the local setting. The investigator will study the largest domain of quasiplurisubharmonic functions on which the complex Monge-Ampere operator is well defined, and singularities of the corresponding quasiplurisubharmonic Green functions. Extension and regularization of quasiplurisubharmonic functions defined on analytic subvarieties will play a role. Finally, the project will explore geometric properties of upper-level sets of Lelong numbers of positive closed currents of arbitrary bidimension on projective manifolds, and will elucidate connections to cohomology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及复分析、复几何和势理论的数学领域。复分析研究依赖于复数变量的函数。复分析和势理论为解决来自纯数学和应用数学其他领域的重要问题提供了强有力的工具(例如,图像和信号处理)和物理学(例如,量子力学和统计物理学)。该项目将侧重于一系列不同的问题,以增进这些领域的知识和理解。从复杂的分析和潜在的理论的新技术将被应用到起源于复杂和代数几何,数学物理和数论等领域的问题。例如,该项目将研究全纯线丛的截面和相关的Bergman核函数的渐近性。例如,这些主题与磁场中粒子的量子力学有关。该项目将通过有效整合研究和教育来影响人力资源的开发,并将包括对博士论文的监督。该项目还将有助于在几个复杂的变量中组织会议。这些活动将汇集建立数学家,早期职业研究人员和研究生讨论数学研究和学生辅导。这个项目将解决起源于多能理论和随机复几何领域的问题,在紧凑的复杂流形的设置。其中一些问题在复几何和代数几何、数学物理或数论中有重要的应用。一个统一的主题是一个专注于pluisubharmonic函数和积极的封闭电流作为调查对象或作为工具。第一个研究方向涉及紧复空间上的量子化问题。这些问题在统计物理学(通过量子混沌)和数论(通过模形式的量子唯一遍历性)中都有应用。与紧复空间上的奇异Hermitian全纯线丛序列相联系,存在平方可积全纯截面的自然Bergman空间。适当的积极性假设曲率将被认为与这些空间的尺寸的增长,收敛的Fubini研究电流,以及相关的伯格曼核函数的渐近性。另一个要考虑的问题是伯格曼空间中m元组的随机序列的公共零点的渐近分布,其中特别注意收敛速度的估计。关于沿沿着解析子集消失到高阶的全纯部分,将研究相应的部分Bergman核的渐近性。另一个研究方向涉及紧致Kaehler流形上的多势理论。这里出现了有趣的新现象,与当地环境不同。调查员将研究quasipulisubharmonic函数的最大域上的复杂的蒙格-安培运营商是很好地定义,和相应的quasipulisubharmonic绿色功能的奇异性。定义在解析子簇上的拟复次调和函数的扩张和正则化将发挥作用。最后,该项目将探索投影流形上任意二维正闭合流的Lelong数的上层集合的几何性质,并将阐明与上同调的联系。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Coman其他文献

On the first order asymptotics of partial Bergman kernels
部分Bergman核的一阶渐近
Zeros of random holomorphic sections of big line bundles with continuous metrics
具有连续度量的大线丛的随机全纯部分的零点
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Turgay Bayraktar;Dan Coman;G. Marinescu;Viet
  • 通讯作者:
    Viet
Smooth submanifolds intersecting any analytic curve in a discrete set
  • DOI:
    10.1007/s00208-004-0616-0
  • 发表时间:
    2005-01-12
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Dan Coman;Norman Levenberg;Evgeny A. Poletsky
  • 通讯作者:
    Evgeny A. Poletsky
Domains of definition of Monge-Ampère operators on compact Kähler manifolds
  • DOI:
    10.1007/s00209-007-0233-1
  • 发表时间:
    2007-08-15
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Dan Coman;Vincent Guedj;Ahmed Zeriahi
  • 通讯作者:
    Ahmed Zeriahi
Complex Analysis and Complex Geometry
复杂分析和复杂几何
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dan Coman;F. Lárusson
  • 通讯作者:
    F. Lárusson

Dan Coman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Coman', 18)}}的其他基金

Midwest Several Complex Variables Conference at Syracuse University
雪城大学中西部多个复杂变量会议
  • 批准号:
    1763456
  • 财政年份:
    2018
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Standard Grant
Pluripotential Theory and Applications to Complex Geometry and Number Theory
多能理论及其在复杂几何和数论中的应用
  • 批准号:
    1700011
  • 财政年份:
    2017
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Continuing Grant
Pluripotential Theory and Applications to Complex Geometry and Number Theory
多能理论及其在复杂几何和数论中的应用
  • 批准号:
    1300157
  • 财政年份:
    2013
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Continuing Grant
Pluripotential Theory and Applications to Geometry, Number Theory, and Dynamics
多能理论及其在几何、数论和动力学中的应用
  • 批准号:
    0900934
  • 财政年份:
    2009
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Standard Grant
Pluripotential Theory and Applications to Complex Dynamics and Number Theory
多能理论及其在复杂动力学和数论中的应用
  • 批准号:
    0500563
  • 财政年份:
    2005
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Standard Grant
Problems in Potential Theory and Dynamics in Several Complex Variables
势理论和多复杂变量动力学问题
  • 批准号:
    0140627
  • 财政年份:
    2002
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
  • 批准号:
    23K20800
  • 财政年份:
    2024
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
  • 批准号:
    2316836
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Standard Grant
New perspectives in contract theory: Optimal incentives for interacting agents in a common random environment
契约理论的新视角:共同随机环境中交互主体的最优激励
  • 批准号:
    2307736
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Continuing Grant
CAREER: Non-Asymptotic Random Matrix Theory and Connections
职业:非渐近随机矩阵理论和联系
  • 批准号:
    2237646
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Continuing Grant
Non-invasive neurosurgical planning with Random Matrix Theory MRI
利用随机矩阵理论 MRI 进行无创神经外科规划
  • 批准号:
    10541655
  • 财政年份:
    2022
  • 资助金额:
    $ 23.71万
  • 项目类别:
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2022
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2022
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Discovery Grants Program - Individual
Fifty Years of Number Theory and Random Matrix Theory
数论和随机矩阵论五十年
  • 批准号:
    2200884
  • 财政年份:
    2022
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了