Pluripotential Theory and Applications to Complex Dynamics and Number Theory
多能理论及其在复杂动力学和数论中的应用
基本信息
- 批准号:0500563
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Proposal DMS-0500563, PI: Dan ComanThis project addresses problems from potential theory and dynamics in several complex variables. The problems in complex dynamics use tools from pluripotential theory and some are likely to require developing new such tools. The first direction of research deals with the study of the fundamental solutions of the complex Monge-Ampere operator, which are called pluricomplex Green functions. This will have applications in understanding the singularities of currents and to some questions in algebraic geometry. The second direction of research deals with the dynamics of polynomial automorphisms of complex Euclidean spaces, in the regular case, and for special classes of irregular mappings. The main interest lies in obtaining a detailed understanding of the dynamics, and in the study of the ergodic properties of the dynamical Green currents and measures. The third direction of research of this project is to analyze the behavior of polynomials along transcendental analytic varieties. This will be used to study arithmetic properties of entire functions, and the algebraic independence of sets of values of transcendental functions. Complex analysis and potential theory are central areas of Mathematics. Over the years, they have provided methods and powerful tools which helped to solve many important problems from other fields of pure and applied Mathematics, as well as from Physics, Biology, Economics, etc. This project deals with the developing and further application of new techniques from analysis and potential theory in several complex variables to problems in dynamical systems and number theory. Thanks to the powerful methods of complex analysis, it has been often the case that progress is made in the study of concrete problems by formulating them first in the context of complex numbers.
提案DMS-0500563摘要, PI:Dan Coman这个项目解决了几个复杂变量的潜在理论和动力学问题。复杂动力学中的问题使用多能理论的工具,有些可能需要开发新的工具。研究的第一个方向是研究复Monge-Ampere算子的基本解,称为复绿色函数。这将有助于理解电流的奇异性和代数几何中的某些问题。第二个方向的研究涉及的动力学多项式自同构的复杂欧氏空间,在正常的情况下,并为特殊类别的不规则映射。主要的兴趣在于获得详细的了解的动力学,并在遍历性的动态绿色电流和措施的研究。本计画的第三个研究方向是分析多项式沿着超越解析簇的行为。这将用于研究整函数的算术性质,以及超越函数的值集的代数独立性。复分析和势理论是数学的核心领域。多年来,他们提供了方法和强大的工具,帮助解决了许多重要的问题,从其他领域的纯数学和应用数学,以及从物理学,生物学,经济学等这个项目涉及的发展和进一步应用新技术,从分析和潜在的理论在几个复杂的变量问题,在动力系统和数论。由于强大的复分析方法,在研究具体问题时,往往首先在复数的背景下将其公式化,从而取得进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Coman其他文献
On the first order asymptotics of partial Bergman kernels
部分Bergman核的一阶渐近
- DOI:
10.5802/afst.1564 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Dan Coman;G. Marinescu - 通讯作者:
G. Marinescu
Zeros of random holomorphic sections of big line bundles with continuous metrics
具有连续度量的大线丛的随机全纯部分的零点
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Turgay Bayraktar;Dan Coman;G. Marinescu;Viet - 通讯作者:
Viet
Smooth submanifolds intersecting any analytic curve in a discrete set
- DOI:
10.1007/s00208-004-0616-0 - 发表时间:
2005-01-12 - 期刊:
- 影响因子:1.400
- 作者:
Dan Coman;Norman Levenberg;Evgeny A. Poletsky - 通讯作者:
Evgeny A. Poletsky
Domains of definition of Monge-Ampère operators on compact Kähler manifolds
- DOI:
10.1007/s00209-007-0233-1 - 发表时间:
2007-08-15 - 期刊:
- 影响因子:1.000
- 作者:
Dan Coman;Vincent Guedj;Ahmed Zeriahi - 通讯作者:
Ahmed Zeriahi
Complex Analysis and Complex Geometry
复杂分析和复杂几何
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Dan Coman;F. Lárusson - 通讯作者:
F. Lárusson
Dan Coman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Coman', 18)}}的其他基金
Pluripotential Theory and Random Geometry on Compact Complex Manifolds
紧复流形上的多势理论和随机几何
- 批准号:
2154273 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Midwest Several Complex Variables Conference at Syracuse University
雪城大学中西部多个复杂变量会议
- 批准号:
1763456 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Pluripotential Theory and Applications to Complex Geometry and Number Theory
多能理论及其在复杂几何和数论中的应用
- 批准号:
1700011 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Pluripotential Theory and Applications to Complex Geometry and Number Theory
多能理论及其在复杂几何和数论中的应用
- 批准号:
1300157 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Pluripotential Theory and Applications to Geometry, Number Theory, and Dynamics
多能理论及其在几何、数论和动力学中的应用
- 批准号:
0900934 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Potential Theory and Dynamics in Several Complex Variables
势理论和多复杂变量动力学问题
- 批准号:
0140627 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
- 批准号:
EP/Z000335/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring Theory and Design Principles (ETD): Auditing Machine Learning Applications for Algorithmic Justice with Computer Science High School Students and Teachers
探索理论和设计原则 (ETD):与计算机科学高中学生和教师一起审核机器学习应用程序的算法正义
- 批准号:
2342438 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Career: Reputation with Limited Information, Theory and Applications
职业:信息、理论和应用有限的声誉
- 批准号:
2337566 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
- 批准号:
24K20849 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
- 批准号:
MR/Y003926/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship