Pluripotential Theory and Applications to Complex Geometry and Number Theory

多能理论及其在复杂几何和数论中的应用

基本信息

  • 批准号:
    1700011
  • 负责人:
  • 金额:
    $ 15.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This research project is in the areas of complex analysis, complex geometry and potential theory. Complex analysis deals with the study of functions that depend on complex variables, and many times concrete questions were answered by considering them in the context of complex numbers. Complex analysis and potential theory are central to modern mathematics and they provide powerful tools for solving important problems from other fields of pure and applied mathematics (e.g., image and signal processing) and physics (e.g., quantum mechanics; statistical physics). Making progress on the research problems in this project will contribute to the advancement of knowledge and understanding in these fields. This mathematics research project deals with problems from pluripotential theory which arise naturally and have important applications to complex geometry or to transcendental number theory. A unifying theme is that the proposed problems focus on plurisubharmonic functions and on positive closed currents as objects of investigation or as some of the tools to be employed. The first direction of research is concerned with quantization problems on complex spaces. These have applications to statistical physics (quantum chaos), as well as to number theory (quantum unique ergodicity for modular forms). Coman will consider sequences of singular Hermitian holomorphic line bundles over complex spaces, and will study the Bergman spaces of square-integrable holomorphic sections defined using this metric data. In particular, he will study the asymptotics of the Bergman kernel functions and the convergence of the Fubini-Study currents associated to these spaces, and the asymptotic distribution of common zeros of random sequences of m-tuples of holomorphic sections. In the special case of the sequence of powers of a single line bundle, Coman will study the asymptotics of partial Bergman kernels corresponding to spaces of holomorphic sections of vanishing to high order along a complex hypersurface. The second direction of research addresses problems in pluripotential theory on compact Kaehler manifolds. Here there are some interesting new phenomena different from the local setting. The goals are to describe the domain of definition of the complex Monge-Ampere operator and to study the corresponding Green functions and their singularities. Coman will also consider the problem of extension and regularization of (quasi) plurisubharmonic functions on analytic subvarieties of the ambient manifold. The third direction of research deals with problems from pluripotential theory in complex Euclidean spaces and considers questions about geometric properties of positive closed currents and their approximation by analytic varieties, and about the behavior of polynomials along transcendental analytic varieties. It is expected that the latter will continue to have applications to transcendental number theory, such as to the study of the algebraic independence of values of entire functions.
该研究项目是在复分析,复几何和潜在的理论领域。复分析研究的是依赖于复变量的函数,很多时候,具体的问题都是在复数的背景下考虑的。复分析和势理论是现代数学的核心,它们为解决纯数学和应用数学其他领域的重要问题提供了强大的工具(例如,图像和信号处理)和物理学(例如,量子力学;统计物理学)。在这个项目的研究问题上取得进展将有助于在这些领域的知识和理解的进步。这个数学研究项目涉及自然产生的多能理论问题,并对复几何或超越数论有重要应用。一个统一的主题是,建议的问题集中在pluisubharmonic函数和积极的封闭电流作为调查对象或作为一些工具。第一个研究方向是关于复空间上的量子化问题。这些理论在统计物理学(量子混沌)和数论(模形式的量子唯一遍历性)中都有应用。科曼将考虑序列的奇异厄米特全纯线丛在复杂的空间,并将研究伯格曼空间的平方可积全纯部分定义使用这个度量数据。特别是,他将研究伯格曼核函数的渐近性和与这些空间相关的Fubini-Study流的收敛性,以及全纯部分的m元组随机序列的公共零点的渐近分布。在特殊情况下的一个单一的线丛的权力序列,科曼将研究渐近的部分伯格曼核对应的空间的全纯部分消失到高阶沿着一个复杂的超曲面。第二个方向的研究解决问题的多能理论紧凑Kaehler流形。这里有一些有趣的新现象,不同于当地的设置。目标是描述复Monge-Ampere算子的定义域,并研究相应的绿色函数及其奇异性。科曼还将考虑问题的延伸和正规化的(准)pluisubharmonic函数解析子品种的环境流形。第三个方向的研究涉及的问题,从pluripotential理论在复杂的欧几里德空间,并认为有关几何性质的积极封闭的电流和他们的近似解析品种的问题,以及有关的行为多项式沿着超越解析品种。预计后者将继续有应用超越数论,如研究的代数独立性的价值观的整个职能。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A survey on zeros of random holomorphic sections
随机全纯截面零点研究
Lelong numbers of bidegree (1, 1) currents on multiprojective spaces
多射影空间上二度 (1, 1) 流的 Lelong 数
  • DOI:
    10.1007/s00209-019-02427-1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Coman, Dan;Heffers, James
  • 通讯作者:
    Heffers, James
Universality results for zeros of random holomorphic sections
随机全纯截面零点的普遍性结果
Toric pluripotential theory
环面多能理论
  • DOI:
    10.4064/ap180409-3-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Coman, Dan;Guedj, Vincent;Sahin, Sibel;Zeriahi, Ahmed
  • 通讯作者:
    Zeriahi, Ahmed
Bergman kernel asymptotics for singular metrics on punctured Riemann surfaces
刺穿黎曼曲面上奇异度量的 Bergman 核渐近
  • DOI:
    10.1512/iumj.2019.68.7589
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Coman, Dan;Klevtsov, Semyon;Marinescu, George
  • 通讯作者:
    Marinescu, George
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Coman其他文献

On the first order asymptotics of partial Bergman kernels
部分Bergman核的一阶渐近
Zeros of random holomorphic sections of big line bundles with continuous metrics
具有连续度量的大线丛的随机全纯部分的零点
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Turgay Bayraktar;Dan Coman;G. Marinescu;Viet
  • 通讯作者:
    Viet
Smooth submanifolds intersecting any analytic curve in a discrete set
  • DOI:
    10.1007/s00208-004-0616-0
  • 发表时间:
    2005-01-12
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Dan Coman;Norman Levenberg;Evgeny A. Poletsky
  • 通讯作者:
    Evgeny A. Poletsky
Domains of definition of Monge-Ampère operators on compact Kähler manifolds
  • DOI:
    10.1007/s00209-007-0233-1
  • 发表时间:
    2007-08-15
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Dan Coman;Vincent Guedj;Ahmed Zeriahi
  • 通讯作者:
    Ahmed Zeriahi
Complex Analysis and Complex Geometry
复杂分析和复杂几何
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dan Coman;F. Lárusson
  • 通讯作者:
    F. Lárusson

Dan Coman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Coman', 18)}}的其他基金

Pluripotential Theory and Random Geometry on Compact Complex Manifolds
紧复流形上的多势理论和随机几何
  • 批准号:
    2154273
  • 财政年份:
    2022
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Midwest Several Complex Variables Conference at Syracuse University
雪城大学中西部多个复杂变量会议
  • 批准号:
    1763456
  • 财政年份:
    2018
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Pluripotential Theory and Applications to Complex Geometry and Number Theory
多能理论及其在复杂几何和数论中的应用
  • 批准号:
    1300157
  • 财政年份:
    2013
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Pluripotential Theory and Applications to Geometry, Number Theory, and Dynamics
多能理论及其在几何、数论和动力学中的应用
  • 批准号:
    0900934
  • 财政年份:
    2009
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Pluripotential Theory and Applications to Complex Dynamics and Number Theory
多能理论及其在复杂动力学和数论中的应用
  • 批准号:
    0500563
  • 财政年份:
    2005
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Problems in Potential Theory and Dynamics in Several Complex Variables
势理论和多复杂变量动力学问题
  • 批准号:
    0140627
  • 财政年份:
    2002
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
  • 批准号:
    EP/Z000335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Research Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Career: Reputation with Limited Information, Theory and Applications
职业:信息、理论和应用有限的声誉
  • 批准号:
    2337566
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Exploring Theory and Design Principles (ETD): Auditing Machine Learning Applications for Algorithmic Justice with Computer Science High School Students and Teachers
探索理论和设计原则 (ETD):与计算机科学高中学生和教师一起审核机器学习应用程序的算法正义
  • 批准号:
    2342438
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
  • 批准号:
    MR/Y003926/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了