Development and Applications of Density Functional Methods for Large Systems

大型系统密度泛函方法的发展与应用

基本信息

  • 批准号:
    2154831
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry, Professor Weitao Yang of Duke University will develop methods in density functional theory for accurate prediction of energy, charge distributions and optical spectroscopy for large and complex systems. The proposed developments should have broad application in a wide range of computational modeling in biology, chemistry, physics, engineering and nano- science and technology. Yang and his research group will disseminate the knowledge and technology gained through these studies through publication of original research work and the public distribution of software packages. The proposed work will contribute to the development of human resources, for the future generation of theoretical and computational chemistry researchers, and will broaden participation in science, technology, engineering and mathematics through Project SEED. Under this award, Weitao Yang and his research group will develop corrections to common density functional approximations to satisfy key constraints on fractional charges and fractional spins. Commonly used approximate functionals have major systematic errors: the delocalization error, as the deviation from the exact linearity condition for fractional charges in a convex behavior, and the strong/static correlation error, as the violation of the constancy condition for fractional spins. Necessary conditions for overcoming these errors have been expressed in terms of fractional charges, fractional spins and their combination. Outstanding challenges in density functional theory remain to satisfy these conditions and overcome the associated systematic errors. Yang and his group will focus on the following three directions: (1) eliminating delocalization error with localized orbital scaling correction, (2) exploring the fundamental principles of obtaining excited state energetic information from ground state density functional theory calculations, and (3) reducing static correction error with localized orbital scaling correction and with multireference density functional theory based on the linear response theory. The broad scientific impact of the work will be enhanced as the Yang team plans to make the computational software developed in this work freely available to the scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学理论,模型和计算方法(CTMC)计划的支持下,杜克大学的杨伟涛教授将开发密度泛函理论方法,用于准确预测大型复杂系统的能量,电荷分布和光谱。 所提出的发展应该在生物学、化学、物理学、工程学和纳米科学与技术的广泛计算建模中具有广泛的应用。杨和他的研究小组将通过出版原始研究成果和公开分发软件包来传播这些研究所获得的知识和技术。 拟议的工作将有助于开发人力资源,为未来一代的理论和计算化学研究人员,并将扩大参与科学,技术,工程和数学通过项目种子。根据该奖项,Weitao Yang和他的研究小组将开发对常见密度泛函近似的修正,以满足分数电荷和分数自旋的关键约束。常用的近似泛函有主要的系统误差:离域误差,作为偏离精确的线性条件的分数电荷在一个凸的行为,和强/静态相关误差,作为违反恒定条件的分数自旋。克服这些错误的必要条件已表示在分数电荷,分数自旋及其组合。 密度泛函理论中的突出挑战仍然是满足这些条件并克服相关的系统误差。Yang和他的团队将专注于以下三个方向:(1)用定域轨道标度校正消除离域误差,(2)探索从基态密度泛函理论计算获得激发态能量信息的基本原理,(3)用定域轨道标度校正和基于线性响应理论的多参考密度泛函理论减少静态校正误差。这项工作的广泛的科学影响将得到加强,因为杨团队计划将这项工作中开发的计算软件免费提供给科学界。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fractional Charge Density Functional Theory and Its Application to the Electro-inductive Effect
分数电荷密度泛函理论及其在电感应效应中的应用
  • DOI:
    10.1021/acs.jpclett.3c00323
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim, Jun-Hyeong;Kim, Dongju;Yang, Weitao;Baik, Mu-Hyun
  • 通讯作者:
    Baik, Mu-Hyun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weitao Yang其他文献

Microbeam Heavy-Ion Single-Event Effect on Xilinx 28-nm System on Chip
Xilinx 28 nm 片上系统上的微束重离子单粒子效应
  • DOI:
    10.1109/tns.2017.2776244
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Weitao Yang;Xuecheng Du;Chaohui He;Shuting Shi;Li Cai;Ning Hui;Gang Guo;Chengliang Huang
  • 通讯作者:
    Chengliang Huang
The collocation method for bound solutions of the Schrödinger equation
薛定谔方程有界解的配置方法
  • DOI:
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weitao Yang;A. Peet
  • 通讯作者:
    A. Peet
Toward the Accurate Modeling of DNA: The Importance of Long-Range Electrostatics
迈向 DNA 精确建模:长程静电的重要性
Contributions of pauli repulsions to the energetics and physical properties computed in QM/MM methods
泡利斥力对 QM/MM 方法计算的能量学和物理性质的贡献
  • DOI:
    10.1002/jcc.23401
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yingdi Jin;E. Johnson;Xiangqian Hu;Weitao Yang;Hao Hu
  • 通讯作者:
    Hao Hu
Simulating force-induced conformational transitions in polysaccharides with the SMD replica exchange method.
使用 SMD 复制品交换方法模拟多糖中力诱导的构象转变。
  • DOI:
    10.1529/biophysj.106.090324
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhenyu Lu;Hao Hu;Weitao Yang;P. Marszalek
  • 通讯作者:
    P. Marszalek

Weitao Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weitao Yang', 18)}}的其他基金

Development and Applications of Density Functional Methods for Large Systems
大型系统密度泛函方法的发展与应用
  • 批准号:
    1900338
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development & Applications of Density Functional Methods
发展
  • 批准号:
    1362927
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development and Applications of Density Functional Methods for Large Systems
大型系统密度泛函方法的发展与应用
  • 批准号:
    0911119
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development and Applications of Density Functional Methods for Large Systems
大型系统密度泛函方法的发展与应用
  • 批准号:
    0616849
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development and Applications of Density Functional Methods for Large Systems
大型系统密度泛函方法的发展与应用
  • 批准号:
    0316207
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development and Applications of Density Functional Methods for Large Systems
大型系统密度泛函方法的发展与应用
  • 批准号:
    9730962
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Symposium on Density Functional Theory and Applications --A Satellite Symposium of the 9th International Congress of Quantum Chemistry
密度泛函理论及应用研讨会--第九届国际量子化学大会卫星研讨会
  • 批准号:
    9615817
  • 财政年份:
    1997
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
The Divide-and-Conquer Density-Functional Approach for Large Molecules and for Molecules on Surfaces
大分子和表面分子的分而治之密度泛函方法
  • 批准号:
    9419391
  • 财政年份:
    1995
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Applying Density-Functional Theory to Large Molecules: Theoretical and Computational Development
将密度泛函理论应用于大分子:理论和计算发展
  • 批准号:
    9109156
  • 财政年份:
    1991
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
  • 批准号:
    10255795
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
  • 批准号:
    10483140
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
  • 批准号:
    10698164
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Multi-wavelength high-density diffuse optical tomography: development, validation and clinical applications
多波长高密度漫射光学断层扫描:开发、验证和临床应用
  • 批准号:
    2405182
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Development and Applications of Density Functional Methods for Large Systems
大型系统密度泛函方法的发展与应用
  • 批准号:
    1900338
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development of actuators for precision and microsystems applications and high output power density energy harvesting technology
开发用于精密和微系统应用的执行器以及高输出功率密度能量收集技术
  • 批准号:
    203102-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Method Development with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods and Its Applications
片段分子轨道和密度功能紧束缚方法的方法开发及其应用
  • 批准号:
    15H06316
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of actuators for precision and microsystems applications and high output power density energy harvesting technology
开发用于精密和微系统应用的执行器以及高输出功率密度能量收集技术
  • 批准号:
    203102-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Development of actuators for precision and microsystems applications and high output power density energy harvesting technology
开发用于精密和微系统应用的执行器以及高输出功率密度能量收集技术
  • 批准号:
    203102-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Applications of High Density RNA Arrays
高密度RNA阵列的开发及应用
  • 批准号:
    9130258
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了