Mirror Symmetry, Birational Geometry, and Moduli.
镜像对称、双有理几何和模。
基本信息
- 批准号:2200875
- 负责人:
- 金额:$ 23.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
String theory posits that interactions of fundamental particles at small scales are explained by hidden dimensions of our universe which are wrapped up to form a tiny geometric space called a Calabi--Yau manifold at each point. The mirror symmetry phenomenon asserts that Calabi--Yau manifolds come in mirror pairs X and Y which determine the same physics, implying surprising relations between geometric properties of X and Y. Birational geometry is the study of surgeries of spaces obtained by cutting out a subspace of lower dimension and gluing another in its place. The moduli space of a space Y parametrizes all possible spaces obtained by deforming Y. If X and Y are a mirror pair, then the birational geometry of X determines the structure of the moduli space of Y near a certain limit point. Based on this heuristic, Morrison conjectured that a Calabi--Yau manifold X admits only finitely many possible surgeries up to symmetries of X. The PI aims to show the conjecture is false in general, but a weaker statement sufficient for applications to moduli holds, as suggested by recent work of the PI with graduate students on unbounded Calabi--Yau manifolds. The PI will also study positively curved spaces called Fano manifolds and singularities that arise at limit points of the moduli space of Calabi--Yau manifolds via mirror symmetry. These projects will be pursued together with graduate students supported by the grant. The PI will also organize seminars and a conference focused on training of graduate students.The PI will study Morrison's cone conjecture and applications to birational geometry and moduli, joint with a collaborator. Morrison conjectured that the automorphism group of a Calabi--Yau manifold acts on its nef cone with rational polyhedral fundamental domain, so that a neighborhood of a cusp of the moduli space of the mirror manifold admits a compactification determined by this data via a construction of Looijenga. Recent work of the PI with graduate students on log Calabi--Yau manifolds and mirror deformations of singularities suggests that the conjecture does not hold in general, but a weaker version sufficient for applications to moduli should hold. The PI will study mirror symmetry for Q-Fano 3-folds and applications to classification and non-arithmetic curves on moduli of K3 surfaces, joint with a graduate student. Q-Fano 3-folds arise as end products of the minimal model program and so are basic to our understanding of 3-folds. Mirror symmetry heuristics suggest that the mirror of a Q-Fano 3-fold is a K3 fibration over the affine line with monodromy at infinity that is maximally unipotent after a finite base change. The mirror corresponds to a rigid rational curve on a moduli space of polarized K3 surfaces. Computations suggest that these curves are not Shimura curves but are uniformized by non-arithmetic groups. The PI will study mirror symmetry for Milnor fibers of surface singularities and applications to symplectomorphism groups and moduli of surfaces, a project that joint with others.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
弦理论认为,小尺度下基本粒子的相互作用可以用我们宇宙的隐藏维度来解释,这些维度被包裹起来,在每一点上形成一个微小的几何空间,称为卡拉比-丘流形。镜像对称现象断言卡拉比-丘流形以镜像对X和Y出现,它们决定了相同的物理性质,这意味着X和Y的几何性质之间存在令人惊讶的关系。双有理几何是研究空间的外科手术,通过切割低维的子空间并在其位置上粘合另一个子空间而获得。空间Y的模空间参数化了通过变形Y而得到的所有可能的空间。如果X和Y是镜像对,则X的双有理几何决定了Y的模空间在某个极限点附近的结构。基于这个启发式,莫里森证明了一个卡拉比-丘流形X只允许X的100多种可能的变换直到X的对称性。PI的目的是表明猜想是假的一般情况下,但一个较弱的声明足以适用于模持有,建议最近的工作PI与研究生的无界卡拉比-丘流形。PI还将研究称为Fano流形的正弯曲空间和通过镜像对称在Calabi-Yau流形的模空间的极限点处出现的奇点。这些项目将与赠款支持的研究生一起进行。PI还将组织研讨会和会议,重点是培养研究生。PI将研究莫里森的锥猜想和应用到双有理几何和模,与合作者联合。莫里森证明了Calabi-Yau流形的自同构群作用在其具有有理多面体基本整环的nef锥上,使得镜像流形的模空间的尖点的邻域通过构造Looijenga而允许由该数据确定的紧化.最近的工作PI与研究生的日志卡拉比-丘流形和镜像变形的奇点表明,猜想并不持有一般,但一个较弱的版本足以适用于模量应持有。PI将研究Q-Fano 3-folds的镜像对称性,并与研究生一起研究K3表面模量的分类和非算术曲线的应用。Q-Fano 3-folds作为最小模型程序的最终产品出现,因此是我们理解3-folds的基础。镜像对称理论表明,Q-Fano 3-fold的镜像是在无穷远处具有单值性的仿射线上的K3纤维化,在有限基变化后是最大幂幺的。该镜对应于极化K3曲面模空间上的刚性有理曲线。 计算表明,这些曲线不是志村曲线,但均匀化的非算术组。PI将研究表面奇点的Milnor纤维的镜像对称性以及在表面的辛态群和模量中的应用,这是一个与其他项目联合的项目。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Hacking其他文献
Paul Hacking的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Hacking', 18)}}的其他基金
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937705 - 财政年份:2019
- 资助金额:
$ 23.98万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1650256 - 财政年份:2017
- 资助金额:
$ 23.98万 - 项目类别:
Continuing Grant
Holomorphic Symplectic Varieties, Mirror Symmetry, and Cluster Algebras
全纯辛簇、镜像对称和簇代数
- 批准号:
1601065 - 财政年份:2016
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
- 批准号:
1360543 - 财政年份:2014
- 资助金额:
$ 23.98万 - 项目类别:
Continuing Grant
Moduli of surfaces, vector bundles, and mirror symmetry
曲面模、向量丛和镜像对称
- 批准号:
1201439 - 财政年份:2012
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Collaborative Research: AGNES. Algebraic Geometry North Eastern Series.
合作研究:AGNES。
- 批准号:
1064426 - 财政年份:2011
- 资助金额:
$ 23.98万 - 项目类别:
Continuing Grant
Exceptional vector bundles and degenerations of surfaces
特殊的向量束和表面的退化
- 批准号:
0968824 - 财政年份:2009
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Exceptional vector bundles and degenerations of surfaces
特殊的向量束和表面的退化
- 批准号:
0855760 - 财政年份:2009
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Moduli problems in algebraic geometry
代数几何中的模问题
- 批准号:
0650052 - 财政年份:2006
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
相似国自然基金
基于级联环形微腔PT-Symmetry效应的芯片级全光开关
- 批准号:61675185
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
- 批准号:
MR/Y034007/1 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Fellowship
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
- 批准号:
2350239 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
- 批准号:
2345644 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Continuing Grant
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Research Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344490 - 财政年份:2024
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
- 批准号:
23H01091 - 财政年份:2023
- 资助金额:
$ 23.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)