The Problem of Evolution in General Relativity
广义相对论中的进化问题
基本信息
- 批准号:0245368
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Sergiu Klainerman, Princeton UniversityDMS-0245368Abstract:The main goal of the proposal is to investigate the regularity properties of the Einstein field equations of General Relativity as well as those of other important physical systems. Most emphasis be given to the `` Bounded square integrable curvature conjecture'' according to which the initial value problem for the Einstein-vacuum equations is well posed with only square integrable bounds on the curvature of its initial data set. The PI believes that this is an essential foundational step towards a generalregularity theory of the Einstein equations. By concentrating on the issue of minimal regularity assumptions for which the equations can be uniquely continued it is hoped that we can find, at least, some of the tools needed in understanding the onset of singular behavior.One of the fundamental tasks of mathematical physics is to provide a full, qualitative, description of black holes and singularities of solutions to the Einstein equations in General Relativity. The principal investigator has established a programwhich he hopes that will provide the rigorous mathematical foundations of such a theory. The main goal of this present proposal is to establish the minimal regularity assumptions that needs to be verified by the initial conditions such that one can still make sense of a physical solution to the Einstein field equations. The proposal also envisages research in connection to other important equations of mathematical physics such as those governing the behavior of collisionless particles in an electromagnetic field.
主要研究者:Sergiu Klainerman,Princeton UniversityDMS-0245368摘要:该提案的主要目标是研究广义相对论爱因斯坦场方程以及其他重要物理系统的正则性。最重要的是给予“有界平方可积曲率”,根据它的爱因斯坦真空方程的初值问题是很好的设置只有平方可积的边界上的曲率的初始数据集。PI认为这是迈向爱因斯坦方程的一般规律性理论的重要基础步骤。通过集中讨论方程可以唯一连续的最小正则性假设问题,希望我们至少可以找到一些 数学物理学的基本任务之一是对广义相对论中的爱因斯坦方程的解的黑洞和奇点提供一个完整的、定性的描述。首席研究员已经建立了一个程序,他希望这将提供严格的数学基础,这样一个理论。本提案的主要目标是建立需要由初始条件验证的最小正则性假设,以便人们仍然可以理解爱因斯坦场方程的物理解。该提案还设想研究与数学物理学的其他重要方程有关的问题,例如控制电磁场中无碰撞粒子行为的方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergiu Klainerman其他文献
A physical space approach to wave equation bilinear estimates
- DOI:
10.1007/bf02868479 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Terence Tao - 通讯作者:
Terence Tao
The resolution of the bounded L 2 curvature conjecture in general relativity
- DOI:
10.1007/s00574-016-0161-y - 发表时间:
2016-06-22 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Jeremie Szeftel - 通讯作者:
Jeremie Szeftel
Sergiu Klainerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergiu Klainerman', 18)}}的其他基金
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
2201031 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
1800841 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Problems in Mathematical General Relativity: Fall 2015 Trimester at Institute Henri Poincare in Paris
数学广义相对论问题:巴黎亨利庞加莱研究所 2015 年秋季学期
- 批准号:
1545144 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Problems in nonlinear hyperbolic equations
非线性双曲方程中的问题
- 批准号:
1362872 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
FRG: Mathematical Theory of Gravitational Collapse in General Relativity
FRG:广义相对论中引力塌缩的数学理论
- 批准号:
1065710 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
- 批准号:
0901250 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Evolution problem in General Relativity
广义相对论中的演化问题
- 批准号:
0601186 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
EMSW21-RTG: Integrated Approach to GraduateTraining in Analysis and Geometry
EMSW21-RTG:分析和几何研究生培训的综合方法
- 批准号:
0502295 - 财政年份:2005
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Regularity Properties of Nonlinear Evolution Equations
非线性演化方程的正则性质
- 批准号:
0070696 - 财政年份:2000
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
General relativistic rotating stars for evolution in the Lagrangian description
拉格朗日描述中广义相对论旋转星的演化
- 批准号:
20K03953 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evolution inspired development of Multi-level Selection Genetic Algorithm for general applications
进化启发了通用应用的多级选择遗传算法的开发
- 批准号:
2899311 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Studentship
Evolution inspired development of Multi-level Selection Genetic Algorithm for general applications
进化启发了通用应用的多级选择遗传算法的开发
- 批准号:
2282166 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Studentship
A general theory for the evolution of body size & condition-dependent offspring provisioning in time-constrained life-histories
身体尺寸演化的一般理论
- 批准号:
471793-2015 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Postdoctoral Fellowships
Development of efficient and general novel time-evolution method based on operator transformation: three-term recurrence relation method
基于算子变换的高效通用新型时间演化方法的发展:三项递推关系法
- 批准号:
15K17811 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
In search for a general tendency of chordate embryonic evolution by analyzing genetic expression patterns during development
通过分析发育过程中的基因表达模式来寻找脊索动物胚胎进化的总体趋势
- 批准号:
15H05603 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
A general theory for the evolution of body size & condition-dependent offspring provisioning in time-constrained life-histories
身体尺寸演化的一般理论
- 批准号:
471793-2015 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Postdoctoral Fellowships
A general theory for the evolution of body size & condition-dependent offspring provisioning in time-constrained life-histories
身体尺寸演化的一般理论
- 批准号:
471793-2015 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Postdoctoral Fellowships
Comparative molecular evolution of animal and plant RNA-interference: Building a general model of how RNAi facilitates complexity
动物和植物 RNA 干扰的比较分子进化:建立 RNAi 如何促进复杂性的通用模型
- 批准号:
1412442 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Constructing a general theory of cognitive adaptation in learning, culture, and evolution
构建学习、文化和进化认知适应的一般理论
- 批准号:
25540051 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




