Problems in nonlinear hyperbolic equations
非线性双曲方程中的问题
基本信息
- 批准号:1362872
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A synopsis of this research project is the question "Are black holes real?" Black holes loom large in the imagination as mysterious regions of space in which the force of gravity is so enormous that nothing, including light, can escape. However, black holes are mathematical constructs, first discovered as explicit solutions of the Einstein field equations that lie at the foundation of General Relativity. The best known family of such solutions, discovered by the applied mathematician R. Kerr, depends on two parameters. It was only later that physicists were able to relate some remarkable astrophysical objects, such as quasars, to these remarkable Kerr solutions. Yet, by definition, black holes cannot be detected by direct observation, and the claim that quasars are associated with massive black holes is based on indirect observations deemed consistent with the specific mathematical properties of the black hole solutions. This project investigates three fundamental questions concerning the mathematical theory of black holes, intimately tied to the issue of whether black holes can be real physical objects. They are the questions of rigidity, stability, and collapse. Stability, for example, concerns the question whether small perturbations of the Kerr solutions can grow arbitrarily large. If this were the case it would follow that the Kerr solutions are mathematical artifacts, with no physical reality. It has been conjectured that the Kerr solutions are stable, but despite some very important advances made recently by mathematicians using innovative partial differential equation methods, the problem remains wide open. The rigidity conjecture asserts that the Kerr family of solutions exhausts all possible stationary solutions of the Einstein field equations in vacuum, while the problem of collapse refers to the question of whether black holes can form in time, naturally, from configurations free of such objects. The project focuses on some of the most important nonlinear hyperbolic equations of mathematical physics. Its main part concerns three related problems in General Relativity at the heart of the theory of black holes: Uniqueness and stability of the Kerr solutions, and formation of black holes. It provides a specific strategy for making progress on the problem of non-linear stability for axially symmetric perturbations of Kerr spacetimes with small angular momentum. In addition, building on recent work on the resolution of the "Bounded Curvature Conjecture", the PI intends to continue the search for a scale invariant criterion for well-posedness, i.e., a scale invariant criterion that insures local existence and uniqueness of solutions. This is an important goal not just within General Relativity but for any of the basic hyperbolic equations, in fluids, elasticity, or relativity. The problems under study require new geometric and analytic ideas as well as the development of new techniques.
这个研究项目的概要是“黑洞是真实存在的吗?”黑洞在人们的想象中显得很大,是空间中神秘的区域,在那里,引力是如此之大,以至于包括光在内的任何东西都无法逃脱。然而,黑洞是数学结构,最初是作为爱因斯坦场方程的显式解被发现的,而爱因斯坦场方程是广义相对论的基础。由应用数学家R. Kerr发现的最著名的一类解依赖于两个参数。直到后来,物理学家才能够将一些非凡的天体物理物体,如类星体,与这些非凡的克尔解联系起来。然而,根据定义,黑洞不能被直接观测到,而类星体与大质量黑洞有关的说法是基于与黑洞解的特定数学性质相一致的间接观测。这个项目研究了关于黑洞数学理论的三个基本问题,这些问题与黑洞是否可以是真实的物理对象的问题密切相关。它们是刚性、稳定性和崩溃的问题。例如,稳定性涉及克尔解的小扰动是否可以任意增大的问题。如果是这样的话,那么克尔解就是数学上的人工产物,没有物理现实。据推测,克尔解是稳定的,但尽管数学家最近使用创新的偏微分方程方法取得了一些非常重要的进展,但这个问题仍然悬而未决。刚性猜想断言克尔解族穷尽了真空中爱因斯坦场方程的所有可能的固定解,而坍缩问题指的是黑洞能否在没有这些物体的情况下自然地及时形成的问题。该项目侧重于数学物理中一些最重要的非线性双曲方程。它的主要部分涉及黑洞理论核心的广义相对论中的三个相关问题:克尔解的唯一性和稳定性,以及黑洞的形成。它为研究具有小角动量的克尔时空轴对称扰动的非线性稳定性问题提供了一种特殊的策略。此外,在最近解决“有界曲率猜想”的工作基础上,PI打算继续寻找适定性的尺度不变准则,即确保解的局部存在性和唯一性的尺度不变准则。这是一个重要的目标,不仅在广义相对论中,而且对任何基本的双曲方程,流体,弹性,或相对论。所研究的问题需要新的几何和解析思想以及新技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergiu Klainerman其他文献
A physical space approach to wave equation bilinear estimates
- DOI:
10.1007/bf02868479 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Terence Tao - 通讯作者:
Terence Tao
The resolution of the bounded L 2 curvature conjecture in general relativity
- DOI:
10.1007/s00574-016-0161-y - 发表时间:
2016-06-22 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Jeremie Szeftel - 通讯作者:
Jeremie Szeftel
Sergiu Klainerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergiu Klainerman', 18)}}的其他基金
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
2201031 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
1800841 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Problems in Mathematical General Relativity: Fall 2015 Trimester at Institute Henri Poincare in Paris
数学广义相对论问题:巴黎亨利庞加莱研究所 2015 年秋季学期
- 批准号:
1545144 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
FRG: Mathematical Theory of Gravitational Collapse in General Relativity
FRG:广义相对论中引力塌缩的数学理论
- 批准号:
1065710 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
- 批准号:
0901250 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Evolution problem in General Relativity
广义相对论中的演化问题
- 批准号:
0601186 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
EMSW21-RTG: Integrated Approach to GraduateTraining in Analysis and Geometry
EMSW21-RTG:分析和几何研究生培训的综合方法
- 批准号:
0502295 - 财政年份:2005
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
The Problem of Evolution in General Relativity
广义相对论中的进化问题
- 批准号:
0245368 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Regularity Properties of Nonlinear Evolution Equations
非线性演化方程的正则性质
- 批准号:
0070696 - 财政年份:2000
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
- 批准号:11105178
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非线性发展方程及其吸引子
- 批准号:10871040
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
大型机械结构非线性特性的实验辨识和物理仿真
- 批准号:50405043
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
半导体中激子的量子非线性光学的研究
- 批准号:10474025
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
- 批准号:70471078
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Theory and Solution Methods for Generalized Nash Equilibrium Problems Governed by Networks of Nonlinear Hyperbolic Conservation Laws
非线性双曲守恒律网络治理的广义纳什均衡问题的理论与求解方法
- 批准号:
423771718 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Priority Programmes
Analysis and computation of nonlinear hyperbolic problems
非线性双曲问题的分析与计算
- 批准号:
298418-2009 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Analysis and computation of nonlinear hyperbolic problems
非线性双曲问题的分析与计算
- 批准号:
298418-2009 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Analysis and computation of nonlinear hyperbolic problems
非线性双曲问题的分析与计算
- 批准号:
298418-2009 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Analysis and computation of nonlinear hyperbolic problems
非线性双曲问题的分析与计算
- 批准号:
298418-2009 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Analysis and computation of nonlinear hyperbolic problems
非线性双曲问题的分析与计算
- 批准号:
298418-2009 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
- 批准号:
20540211 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
- 批准号:
249488-2003 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
- 批准号:
249488-2003 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
- 批准号:
249488-2003 - 财政年份:2005
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual