Regularity Properties of Nonlinear Evolution Equations
非线性演化方程的正则性质
基本信息
- 批准号:0070696
- 负责人:
- 金额:$ 24.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTThe main goal of the proposal is to develop new analytic methods to deal with the fundamental issue of global regularity for Nonlinear Wave Equations such as Wave Maps, Yang-Mills and the Einstein Vacuum Equations. We propose two specific problems to investigate. The first concerns the critical global well-posedness for Wave Maps and the second is to establish local well posedness in $H^2$ for the Einstein Vacuum equations.Nonlinear Wave equations are at the heart of some of our basic physical theory such as General Relativity, Electrodynamics, Elasticity etc. Despite a lot of progress made throughout last century our knowledge of nonlinear waves remains rudimentary. The proposal outlines some directions in which we expect to make considerable progress. The main one concerns the Einstein field equations. It is well known that these equations can develop black holes and singularities. This fact makes it imperative to develop a theory for rough solutions for these equations. The Wave Maps equations can be viewed as a simplified model problem for the Einstein equations. We hope that a better understanding of rough solutions of these equations will help us make progress in connection to the former equations also.
本文的主要目标是发展新的分析方法来处理非线性波动方程的全局正则性的基本问题,如波动映射、杨-米尔斯方程和爱因斯坦真空方程。我们提出了两个具体的问题进行调查。第一个是关于波映射的临界整体适定性,第二个是建立爱因斯坦真空方程在H^2 $中的局部适定性。非线性波方程是我们的一些基本物理理论的核心,如广义相对论,电动力学,弹性力学等。尽管在上个世纪取得了很大的进展,我们对非线性波的认识仍然是初步的。该提案概述了我们预期取得重大进展的一些方向。主要的一个涉及爱因斯坦场方程。众所周知,这些方程可以产生黑洞和奇点。这一事实使得它必须发展一个理论,粗糙的解决方案,这些方程。 波映射方程可以看作是爱因斯坦方程的简化模型问题。我们希望更好地理解这些方程的粗糙解将有助于我们在与前方程的联系方面取得进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergiu Klainerman其他文献
A physical space approach to wave equation bilinear estimates
- DOI:
10.1007/bf02868479 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Terence Tao - 通讯作者:
Terence Tao
The resolution of the bounded L 2 curvature conjecture in general relativity
- DOI:
10.1007/s00574-016-0161-y - 发表时间:
2016-06-22 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Jeremie Szeftel - 通讯作者:
Jeremie Szeftel
Sergiu Klainerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergiu Klainerman', 18)}}的其他基金
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
2201031 - 财政年份:2022
- 资助金额:
$ 24.5万 - 项目类别:
Standard Grant
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
1800841 - 财政年份:2018
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant
Problems in Mathematical General Relativity: Fall 2015 Trimester at Institute Henri Poincare in Paris
数学广义相对论问题:巴黎亨利庞加莱研究所 2015 年秋季学期
- 批准号:
1545144 - 财政年份:2015
- 资助金额:
$ 24.5万 - 项目类别:
Standard Grant
Problems in nonlinear hyperbolic equations
非线性双曲方程中的问题
- 批准号:
1362872 - 财政年份:2014
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant
FRG: Mathematical Theory of Gravitational Collapse in General Relativity
FRG:广义相对论中引力塌缩的数学理论
- 批准号:
1065710 - 财政年份:2011
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
- 批准号:
0901250 - 财政年份:2009
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant
Evolution problem in General Relativity
广义相对论中的演化问题
- 批准号:
0601186 - 财政年份:2006
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant
EMSW21-RTG: Integrated Approach to GraduateTraining in Analysis and Geometry
EMSW21-RTG:分析和几何研究生培训的综合方法
- 批准号:
0502295 - 财政年份:2005
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant
The Problem of Evolution in General Relativity
广义相对论中的进化问题
- 批准号:
0245368 - 财政年份:2003
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant
相似海外基金
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
$ 24.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of functional properties of nanoscale interfacial water by nonlinear spectroscopy
通过非线性光谱阐明纳米级界面水的功能特性
- 批准号:
22H00296 - 财政年份:2022
- 资助金额:
$ 24.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Smart Damage Assessment Tool of Suspension and Cable-Stayed Bridges Through Analysis of Nonlinear Characteristics of the Structural Properties and Energy Cascading to Higher Frequencies
通过分析结构特性的非线性特性和更高频率的能量级联,实现悬索桥和斜拉桥的智能损伤评估工具
- 批准号:
575709-2022 - 财政年份:2022
- 资助金额:
$ 24.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Study on a vibration isolator using post-buckled properties of nonlinear materials
利用非线性材料后屈曲特性的隔振器研究
- 批准号:
22K03999 - 财政年份:2022
- 资助金额:
$ 24.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Plasmonic and Nonlinear Optical Properties of Gold Metamaterials
金超材料的等离子体和非线性光学特性
- 批准号:
548072-2020 - 财政年份:2021
- 资助金额:
$ 24.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Plasmonic and Nonlinear Optical Properties of Gold Metamaterials
金超材料的等离子体和非线性光学特性
- 批准号:
548072-2020 - 财政年份:2020
- 资助金额:
$ 24.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Emergent functions based on solution properties of rigid nonlinear polymers
基于刚性非线性聚合物解性质的涌现函数
- 批准号:
20H02788 - 财政年份:2020
- 资助金额:
$ 24.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Diffractive Properties Based on Nonlinear Optical Effect of Dye-Doped Liquid Crystals
基于染料掺杂液晶非线性光学效应的衍射特性分析
- 批准号:
20J14875 - 财政年份:2020
- 资助金额:
$ 24.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theoretical studies of nonlinear optical properties of fluorescent proteins by novel low-cost quantum chemistry methods
通过新型低成本量子化学方法对荧光蛋白非线性光学性质的理论研究
- 批准号:
450959503 - 财政年份:2020
- 资助金额:
$ 24.5万 - 项目类别:
Research Grants
Investigation of electromechanically coupled properties and increase in performance of piezoelectric vibration energy harvester by using multi-switching nonlinear circuit
使用多开关非线性电路研究机电耦合特性并提高压电振动能量收集器的性能
- 批准号:
20K04347 - 财政年份:2020
- 资助金额:
$ 24.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)