Singularities and String Theory
奇点和弦理论
基本信息
- 批准号:2201203
- 负责人:
- 金额:$ 26.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns research at the interface of algebraic geometry in mathematics and string theory in theoretical physics. Algebraic geometry is the investigation of algebraic solutions of polynomial equations, the geometry of the graphs of these solutions, and the theoretical structure describing their properties. It has numerous applications in science and engineering, including statistics, biology, and geometric modeling, as well as the application to string theory being advanced in this project. String theory is a physical theoretical framework for a unified field theory incorporating all the forces and particles found in nature. String theory has found wide application beyond unified field theory, including condensed matter physics, black hole physics, and the application to mathematics being advanced in this project. The Principal Investigator will involve graduate students and undergraduate students in aspects of the project, assisting their professional development and contributing to the development of the scientific workforce.More specifically, a collection of interrelated questions at the interface of string theory and singularity theory in algebraic geometry will be explored. Within algebraic geometry, there are two major sets of problems. The first pursues some open directions in the theory of canonical singularities of threefolds, their crepant resolutions, and enumerative invariants of these resolutions. The other direction is the study of the singularities of elliptically fibered Calabi-Yau threefolds and their connection to Hodge theory via the decomposition theorem. Within string theory, there are also two major sets of problems. The first pursues the geometry of 5-dimensional superconformal field theories and their moduli. The other direction is the development of the properties of F-theory directly from its definition as Type IIB string theory with varying axiodilaton without invoking duality. Connections between canonical singularities and 5-dimensional superconformal field theories will be explored and developed as well as the connection between Hodge theory and F-theory. The project also includes investigation of additional topics in string theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及数学中代数几何与理论物理学中弦理论的接口研究。代数几何是研究多项式方程的代数解,这些解的图形的几何,以及描述其性质的理论结构。它在科学和工程中有许多应用,包括统计学,生物学和几何建模,以及在这个项目中正在推进的弦理论的应用。弦理论是一个统一场论的物理理论框架,它包含了自然界中所有的力和粒子。弦理论在统一场论之外有着广泛的应用,包括凝聚态物理学、黑洞物理学,以及在这个项目中正在推进的数学应用。首席研究员将邀请研究生和本科生参与项目的各个方面,协助他们的专业发展,并为科学人才的发展做出贡献。更具体地说,将探索代数几何中弦理论和奇点理论界面上的一系列相互关联的问题。在代数几何中,有两组主要的问题。第一个追求一些开放的方向在理论上的规范奇点的threefolds,他们的crepant决议,并枚举不变量的这些决议。另一个方向是研究椭圆纤维卡-丘三重的奇异性及其通过分解定理与霍奇理论的联系。在弦理论中,也有两大类问题。第一个追求的几何5维超共形场理论和它们的模。另一个方向是F理论的性质的发展,直接从它的定义为具有变化的公理扩张的IIB型弦理论,而不需要调用对偶。正则奇点和5维超共形场论之间的联系将被探索和发展,以及霍奇理论和F理论之间的联系。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheldon Katz其他文献
Log higher Albanese manifolds (joint with K. Kato, C. Nakayama)
对数更高的 Albanese 流形(与 K. Kato、C. Nakayama 联合)
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jinwon Choi;Michel van Garrel;Sheldon Katz;Nobuyoshi Takahashi;加藤和也;Y. Hashimoto;Nobuyoshi Takahashi;Nakayama Chikara;Yasufumi Hashimoto;Usui Sampei;Nobuyoshi Takahashi;臼井三平;Yasufumi Hashimoto;Usui Sampei - 通讯作者:
Usui Sampei
Geometric transitions, flops and non-Kähler manifolds: II
- DOI:
10.1016/j.nuclphysb.2005.12.023 - 发表时间:
2006-03-20 - 期刊:
- 影响因子:
- 作者:
Melanie Becker;Keshav Dasgupta;Sheldon Katz;Anke Knauf;Radu Tatar - 通讯作者:
Radu Tatar
The cubo-cubic transformation ofP 3 is very special
- DOI:
10.1007/bf01166461 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Sheldon Katz - 通讯作者:
Sheldon Katz
Lines on complete intersection threefolds withK=0
- DOI:
10.1007/bf01164033 - 发表时间:
1986-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Sheldon Katz - 通讯作者:
Sheldon Katz
Log mixed Hodge structures with group action
通过群体行动记录混合 Hodge 结构
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jinwon Choi;Michel van Garrel;Sheldon Katz;Nobuyoshi Takahashi;加藤和也;Y. Hashimoto;Nobuyoshi Takahashi;Nakayama Chikara;Yasufumi Hashimoto;Usui Sampei - 通讯作者:
Usui Sampei
Sheldon Katz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheldon Katz', 18)}}的其他基金
Conference: Facets of Noncommutative Geometry
会议:非交换几何的方面
- 批准号:
2203450 - 财政年份:2022
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
BPS Geometry, Singularities, and String Theory
BPS 几何、奇点和弦理论
- 批准号:
1802242 - 财政年份:2018
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
Some problems in Algebraic Geometry and String Theory
代数几何和弦论中的一些问题
- 批准号:
1502170 - 财政年份:2015
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
Some problems in algebraic geometry and string theory
代数几何和弦论中的一些问题
- 批准号:
1201089 - 财政年份:2012
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
Some problems in algebraic geometry with connections to string theory
代数几何中与弦理论相关的一些问题
- 批准号:
0555678 - 财政年份:2006
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
Conference: Student Travel Grant for the 2004 IEEE Radar Conference to be held in Philadelphia, PA on April 26-29, 2004.
会议:为将于 2004 年 4 月 26 日至 29 日在宾夕法尼亚州费城举行的 2004 年 IEEE 雷达会议提供学生旅费资助。
- 批准号:
0342954 - 财政年份:2004
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Topological Invariants and Matrix Models
FRG:协作研究:拓扑不变量和矩阵模型
- 批准号:
0244412 - 财政年份:2003
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
Algebraic Geometry Workshop, June 12-15, 2002, Urbana, Illinois
代数几何研讨会,2002 年 6 月 12-15 日,伊利诺伊州厄巴纳
- 批准号:
0200459 - 财政年份:2002
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
Collaborative Research: The Geometry of Duality in Mathematics and Physics
合作研究:数学和物理中的对偶几何
- 批准号:
0296154 - 财政年份:2001
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
Collaborative Research: The Geometry of Duality in Mathematics and Physics
合作研究:数学和物理中的对偶几何
- 批准号:
0073657 - 财政年份:2000
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
相似国自然基金
带应力string方法及其在材料计算中的应用
- 批准号:11001244
- 批准年份:2010
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Studentship
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
Enlarging the string theory landscape
扩大弦理论的前景
- 批准号:
23KF0214 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
- 批准号:
23K03391 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in String Theory and Quantum Field Theory
弦论和量子场论主题
- 批准号:
2310635 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
Physical Mathematics: String Theory, Quantization and Geometry
物理数学:弦理论、量化和几何
- 批准号:
SAPIN-2018-00029 - 财政年份:2022
- 资助金额:
$ 26.49万 - 项目类别:
Subatomic Physics Envelope - Individual